
1 0  n o v e m b e r  2 0 1 6  |  VO  L  5 3 9  |  N A T U RE   |  2 5 9

Letter
doi:10.1038/nature20126

Self-bound droplets of a dilute magnetic quantum 
liquid
Matthias Schmitt1, Matthias Wenzel1, Fabian Böttcher1, Igor Ferrier-Barbut1 & Tilman Pfau1

Self-bound many-body systems are formed through a balance of 
attractive and repulsive forces and occur in many physical scenarios. 
Liquid droplets are an example of a self-bound system, formed by 
a balance of the mutual attractive and repulsive forces that derive 
from different components of the inter-particle potential. It has been 
suggested1,2 that self-bound ensembles of ultracold atoms should 
exist for atom number densities that are 108 times lower than in 
a helium droplet, which is formed from a dense quantum liquid. 
However, such ensembles have been elusive up to now because they 
require forces other than the usual zero-range contact interaction, 
which is either attractive or repulsive but never both. On the basis 
of the recent finding that an unstable bosonic dipolar gas can be 
stabilized by a repulsive many-body term3, it was predicted that 
three-dimensional self-bound quantum droplets of magnetic atoms 
should exist4,5. Here we report the observation of such droplets in a 
trap-free levitation field. We find that this dilute magnetic quantum 
liquid requires a minimum, critical number of atoms, below which 
the liquid evaporates into an expanding gas as a result of the 
quantum pressure of the individual constituents. Consequently, 
around this critical atom number we observe an interaction-driven 
phase transition between a gas and a self-bound liquid in the 
quantum degenerate regime with ultracold atoms. These droplets 
are the dilute counterpart of strongly correlated self-bound systems 
such as atomic nuclei6 and helium droplets7.

Liquid droplets of water or helium are formed by the mutual attrac-
tive and repulsive forces that are created by the different parts of the 
inter-particle potential (and are due to covalent or van der Waals 
attraction and to the electronic Pauli exclusion principle, respectively). 
Helium droplets in particular have been a focus of research, owing 
to their interesting quantum nature8,9. Droplets can serve as closed, 
isolated quantum systems with which to probe, for example, super
fluidity of mesoscopic ensembles10. In the context of ultracold atoms, 
the observation of an ensemble of stable droplets11 in a dilute magnetic 
quantum gas opened up the possibility of a three-dimensional self-
bound state4,5. A trapped quantum droplet of magnetic atoms has 
recently also been observed using erbium atoms12. Here we demon-
strate the observation of dilute, self-bound liquid droplets in a sample 
of ultracold bosonic dysprosium atoms, which have a strong long-
range magnetic dipolar interaction and a tunable repulsive short-range 
contact interaction. The interplay between these two interactions can 
be tuned such that the overall mean field is weakly attractive, but so that 
the interactions also create quantum depletion and a corresponding 
many-body repulsion. This repulsion exactly counteracts the attraction 
when the density of the droplet reaches the stabilization density. We 
use the word ‘liquid’ here to describe a state of matter that is defined 
by the presence of self-bound droplets and by the stabilization of the 
self-binding forces as a result of repulsion beyond the simple mean-
field level, which manifests itself as a nontrivial correlation function. 
For dilute liquids, these correlations can be very weak (as in the pres-
ent case), contrary to dense liquids for which correlations are strong. 
At small atom numbers (around 1,000 atoms), the finite size of the 

wavefunction of the quantum droplet leads to a quantum pressure for 
each individual atom that results in an evaporation out of the self-bind-
ing potential. Therefore, these droplets are bound only above a critical 
atom number, which we investigate systematically.

We use 164Dy, which has one of the strongest magnetic dipole 
moments in the periodic table with μ =​ 9.93μB, where μB is the 
Bohr magneton. These atoms also offer control on the short-range 
interaction by a magnetic field using Feshbach resonances13–15.  
Here we use a specific resonance at a field of B0 =​ 7.117(3) G with a width of  
Δ​B =​ 51(15) mG. (Here and elsewhere, the errors in parentheses 
indicate one standard deviation.) This resonance allows the scattering 
length a to be tuned from that of a dipole-dominated sample to a 
contact-dominated sample, without strong losses (Fig. 1b). To quantify 
the relative influence of the short-range and dipole–dipole interactions, 
we describe the interaction strengths using the relative dipolar strength 
εdd =​ add/a, where add =​ μ0μ2m/(12π​ħ2) ≈​ 131a0 is the dipolar length,  
a0 is the Bohr radius, ħ is the reduced Planck constant, μ0 is the vacuum 
permeability and m is the atomic mass. To observe the self-bound 
state, we prepare an initially oblate Bose–Einstein condensate (BEC)16 
of 164Dy with an atom number of N =​ 6,000(500) at a temperature of 
T =​ 20 nK at large scattering length (BBEC =​ 7.089(5) G), for which the 
interaction is contact-dominated, and shape it using an additional 
optical trap into a prolate shape along the magnetic field direction. 
This reshaping is done in two stages. First, we ramp up a focused beam 
(with a wavelength of 532 nm, aligned in the z direction) within 50 ms. 
With this attractive potential, the radial trap frequencies are increased 
to change the aspect ratio of the trap λ =​ ωz/ωρ from λ =​ (80 Hz)/
(20.5 Hz) =​ 3.9 down to λ =​ (80 Hz)/(61 Hz) =​ 1.3; here, ωz (ωρ) is 
the trapping frequency along (perpendicular to) the magnetic field 
direction. At this point, owing to magnetostriction17, the BEC becomes 
prolate with a cloud aspect ratio κ =​ σz/σρ of approximately 1.5 (with 
σz (σρ) the physical size (at 1/e2) of the cloud in (perpendicular to) 
the field direction) and has a typical atom number that is estimated 
to be N =​ 3,000(300). Note that not all of these atoms are found to be 
in the self-bound state. Second, we apply a magnetic field gradient to 
the atomic cloud that exactly compensates the gravitational force and 
thus results in levitation. In this configuration, the cloud undergoes a 
continuous crossover from the BEC state directly to the single-droplet 
ground state as the scattering length is reduced, bypassing a bistable 
region4,18. Over the next 50 ms we lower the field to various values 
between B =​ 6.831(5) G and B =​ 6.469(5) G (indicated by the hatched 
area in Fig. 1b) to decrease the scattering length and create a single 
droplet. We hold the atoms in this configuration for 10 ms before 
ramping the optical trap powers within 20 ms to approximately 5% of 
their initial values, keeping a constant trap aspect ratio. At this point, 
we suddenly turn off the trap and image the cloud using far-detuned 
phase-contrast polarization imaging after various levitation times up to 
tlevitate =​ 90 ms. This sequence is shown schematically in Fig. 1a. Being 
sensitive only to high densities, we observe that a thermal fraction 
of the atomic cloud expands very quickly, whereas a very small and 
dense cloud remains for very long times. We interpret this observation 
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as a self-bound quantum droplet. We calculated the radial size of 
the quantum droplets to be approximately 300 nm, which is smaller 
than our imaging resolution of 1 μ​m such that we observe astigmatic 
diffraction (see Fig. 2a). At specific fields, we observe these droplets 
for times as long as tlevitate =​ 90 ms. At some time during the trap-free 
levitation, we observe that the droplets have expanded. We reason that 
this behaviour is due to the fact that droplets lose atoms as a result 
of three-body decay or residual excitations until they reach a critical 
atom number, below which they are no longer self-bound and evaporate  
back into a gas phase. In this context, the word ‘evaporation’ is used 
to denote the transition from a dilute self-bound liquid state to an 
expanding gas state. Given our shot-to-shot noise in the initial atom 
number, the critical atom number is reached at different times. This 
behaviour is represented in Fig. 2a.

As a first analysis, we count the images in which we observe a 
single droplet over 100 realizations and plot the survival probability 
for different magnetic fields (Fig. 2b). The levitation time is varied 
between tlevitate =​ 0 ms, which essentially represents a trapped cloud, and 
tlevitate =​ 90 ms. For low scattering length (B =​ 6.469(5) G), we always 
create a single droplet, but its lifetime is short. As the scattering length 
increases, so does the lifetime. We find a maximal survival probability 
in the magnetic field range B =​ 6.572(5)–6.676(5) G. For even higher 
scattering lengths, we find droplets only at 0 ms, and very few self-
bound droplets. The calculated survival probabilities are in qualitative 
agreement with an increasing critical atom number and a decreasing 
rate of atom loss in the droplets with increasing scattering length. 
This behaviour has been observed3 in a waveguide configuration and 
for a single trapped droplet12, and is supported by calculations on a 
self-bound droplet5,19. However, the precise evolution depends on the 
spread in initial atom number and the fact that droplets evaporate at 
different atom numbers (see below).

To obtain a more quantitative analysis of the critical atom number of 
these droplets, we intentionally evaporate them after variable levitation 
times by increasing the magnetic field to Bevap =​ 6.986(5) G (dashed 
black line in Fig. 1b). At this field, we observe that all droplets have been 
evaporated and interpret this to mean that the critical atom number at 

this field is higher than all relevant atom numbers observed here. After 
expansion, the atom number can be determined accurately without 
being limited by the finite resolution of the imaging optics. Here we 
observe that the number of atoms in the droplets decays to an essen-
tially constant number—further indication of a critical atom number 
for self-bound droplets. This behaviour is demonstrated in Fig. 3a for 
a magnetic field of B =​ 6.520(5) G, wherein each point is represented 
by a mean atom number that is calculated from 20 images, and the 
error denotes one standard deviation. A histogram of the atom number 
distribution for long levitation times (tlevitate ≥​ 60 ms) and for different 
magnetic fields is shown in Fig. 3b. We observe that the atom number 
distributions shift with scattering length, and conclude that the droplets 
lose atoms until they reach the critical atom number, at which point 
all of the atoms evaporate out of the droplets into the gas phase. We 
observe that at long times, when most droplets have evaporated, there 
is an asymmetric dispersion in atom number to higher values. We posit 
that this reflects the fact that not all droplets evaporate at exactly the 
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Figure 1 | Experimental sequence. a, A schematic of the experimental 
sequence. We start with an atomic ensemble in a crossed optical trap 
superimposed with a magnetic field gradient that is strong enough to 
compensate the gravitational force. We then turn off the trapping beams 
and levitate the droplet for various times tlevitate. Finally, we image the 
atoms using phase-contrast polarization imaging projected on an EMCCD 
(electron multiplying charge coupled device) camera. b, Scattering length 
as a function of magnetic field at the region of the Feshbach resonance 
in units of the positive background scattering length abg. The red dashed 
line indicates the field (BBEC) at which we create a BEC. The hatched 
area describes the region in which the experiments were performed. The 
dashed black line shows the magnetic field (Bevap) used to intentionally 
evaporate the droplets to the gas phase.
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Figure 2 | Droplet survival probability. a, Image sequences of two 
droplets with different levitation times at the same magnetic field 
B =​ 6.676(5) G. The images are not multiple images of the same droplet, 
but are selected from various images because the imaging process is 
destructive. All images are rescaled to the maximum optical density and 
have been re-centred. In the left-hand column, we start with an atom 
number that is much larger than the critical atom number for stable 
droplets and observe a single droplet up to tlevitate =​ 70 ms. Between 
t =​ 70 ms and t =​ 90 ms, the cloud reaches the critical atom number and 
evaporates back to a gas phase, observed as an expanding cloud. In the 
right-hand column, the droplet starts with an atom number that is much 
closer to the critical atom number, leading to an earlier evaporation, 
between 20 ms and 50 ms of levitation time. From this point, the cloud 
evaporates to the BEC phase and expands. b, Histogram of the survival 
probability of a single droplet as function of levitation time and magnetic 
field. At low scattering lengths (B =​ 6.469(5) G), we always observe 
droplets for up to tlevitate =​ 30 ms, followed by a fast decay in survival 
probability that is explained by a fast decay in atom number as a result 
of three-body collisions. For increasing scattering length, we observe an 
increase in the lifetime of the droplets up to a magnetic field range of 
B =​ 6.572(5)–6.676(5) G. At these conditions we observe a single droplet 
with a size below our resolution after a levitation time of tlevitate =​ 90 ms. 
Further increase of the scattering length leads to a fast decay of self-bound 
droplets even for short times (tlevitate =​ 20 ms), which we interpret as 
originating from an increase in the critical atom number to values close to 
our initial atom number. For the highest scattering length (B =​ 6.831(5) G), 
we barely create droplets in the trap.
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critical atom number, but that the evaporation for some droplets can 
occur with N >​ Ncrit, owing to the presence of residual (for example, 
thermal) excitations in the droplet. To extract a critical atom number 
we fit the histograms with a convolution of a Gaussian and a Maxwell–
Boltzmann distribution (see Methods).

The best fits are shown in Fig. 3b as red curves. We plot our result 
of the critical atom number in Fig. 4 and compare it to full, extended 
Gross–Pitaevskii simulations (see Methods). The error is given by the 
quadratic mean of the widths of the Maxwell–Boltzmann and Gaussian 
distributions. This way of determining Ncrit depends on the model used 
to determine the fit; other definitions could lead to slightly different 
values. Nevertheless, we see a clear change in the critical atom number 
with magnetic field, and with this we probe the phase transition line 
between the dilute liquid phase and the gas phase. To compare the 
results with the simulations, we calculate the relative dipolar strength 
for our magnetic field range. To do so, we include the Feshbach 
resonance at B01 =​ 7.117(3) G with a width of Δ​B1 =​ 51(15) mG and 
a resonance at B02 =​ 5.1(1) G with a width of Δ​B2 =​ 0.1(1) G. A best 
fit is obtained when we change the previously assumed local back-
ground scattering length14 of abg =​ 92(8)a0 to abg =​ 62.5a0. This lower 
value seems, at first, to be incompatible with previous measure-
ments at different fields14; however, the complexity of the scattering 
problem in dysprosium does not allow a theoretical prediction and 
the local abg might vary in other ranges of magnetic field. In addition, 
theoretical simulations of the Rosensweig instability18,19 suggest that 
a background scattering length of less than 92a0 is necessary to agree 
with experimentally observed timescales11. In our measurements, the 
strong dependence of Ncrit on scattering length provides a very high 
sensitivity. Changing the background scattering length from 92a0 to 
62.5a0 reduces Ncrit by almost a factor of ten. This method therefore 
enables a very precise measurement of the scattering length. However, 
at this level of precision, we must question the approximations made in 
our model, such as the first-order Born approximation for the dipolar 
scattering and the local density approximation. Consequently, the value 
of abg quoted here is model-dependent, and could be subject to future 
corrections. An independent measurement of a, via the methods of 
ref. 12 for instance, would make Ncrit measurements a very sensitive 
benchmark for many-body theories.
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Figure 3 | Critical atom number. a, Decay in atom number as function  
of levitation time. Each point represents the mean atom number of  
20 realizations; error bars denote the standard deviation. We observe a 
decay for short times to an essentially constant number for long times.  
The dashed line shows the critical atom number as determined by the  
best fit of our convoluted model (see text) to the data; the shaded area 
shows the error in this fit, represented by the quadratic mean of the  
widths of the convoluted distributions. For levitation times of less than 
20 ms, the measured atom number overestimates the atom number in the 
self-bound droplet because it is hard to distinguish the droplet from the 
surrounding BEC in our experimental procedure. b, We analyse the atom 
number distribution for levitation times in the range tlevitate =​ 60–100 ms 
because the atom number is mostly constant in this range. We bin the  
atom number to a window of 50 atoms and plot the relative counts as a 
function of atom number and magnetic field. The red curves represent  
fits of the convoluted functions to the observed histograms. The colours  
of the plotted histograms match those in Fig. 2b, and represent the 
magnetic field.
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Figure 4 | Phase transition between dilute liquid and gas. The data 
points show the critical atom number as a function of the magnetic field, 
as determined from the fit values from Fig. 3b. The error in the atom 
number is given by the quadratic mean of the widths of the Gaussian and 
Maxwell–Boltzmann distributions; the error in magnetic field describes 
the resolution of our magnetic field coils. As the magnetic field decreases, 
so does the critical atom number Ncrit. We identify the upper-left corner 
as the dilute liquid phase and the lower-right corner as the gas phase. The 
critical atom number describes the phase transition between dilute liquid 
and gas. The solid red line represents a full Gross–Pitaevskii simulation for 
different relative dipolar strengths εdd.
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By removing the need for any trapping potential, our observation 
of the self-bound regime offers access to truly isolated, dissipative 
quantum systems in which the effective cancellation of the mean field 
enables quantum correlations to be studied in detail. The gas-to-liquid 
transition and, in particular, the nucleation dynamics of the droplets 
will be sensitive probes of the interplay between interactions and  
quantum correlations.

Online Content Methods, along with any additional Extended Data display items and 
Source Data, are available in the online version of the paper; references unique to 
these sections appear only in the online paper.
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Methods
Convolution model. To extract the critical atom number from the data in Fig. 3 
we fit the histograms with a phenomenological model (represented as red lines). 
This model consists of the convolution of a Gaussian and a Maxwell–Boltzmann 
distribution. The symmetric Gaussian distribution represents broadening effects 
that result from statistical errors including detection noise. The asymmetric 
Maxwell–Boltzmann distribution is used to model the possibility of a droplet 
fully evaporating at atom numbers higher than the critical atom number, as a 
result of the presence of collective excitations in the droplets. From the fit we 
extract the critical atom number and two widths, one from each distribution in 
the convolution. We represent the quadratic mean of these widths as error bars 
in Fig. 4.
Extended Gross–Pitaevskii simulation. To compare our results to current  
theory4,5, we perform simulations of the effective Gross–Pitaevskii equation
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using a simple interaction potential, and taking into account quantum fluctuations 
within a local density approximation20,21 and three-body losses. Here
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describes the dipole–dipole interaction potential, with ϑ denoting the angle 
between the polarization direction of the dipoles and their relative orientation. 

The main assumptions of this model are therefore the validity of the local density 
approximation and of the interaction potential, which results from the first-order 
Born approximation. The magnetic moment and scattering length are μ =​ 9.93μB 
and a =​ 60a0–80a0, respectively. The latter defines g =​ 4π​aħ2/m and is chosen 
such that we are in agreement with the critical atom numbers we observe in 
the experiment. The loss parameter L3 =​ 1.25 ×​ 10−41 m6 s−1 is estimated from 
measurements on a thermal cloud and is assumed to be constant over the small 
range of scattering lengths. The validity of the local density approximation is 
supported by quantum Monte Carlo simulations22 and recent measurements with 
erbium atoms12.

To obtain the data in Fig. 4, we choose Vext =​ 0 and initially prepare N0 >​ Ncrit 
atoms with a Gaussian density distribution (σr =​ 250 nm, σz =​ 1,500 nm). The 
ground state is reached by imaginary time evolution of equation (1) using a split-
step Fourier method. Following this preparation of the self-bound droplet with N0 
atoms, we simulate the dynamics via real-time evolution. Because the atom number 
N <​ N0 decays, owing to three-body losses, the density and the effective two-body 
attraction are also reduced. At N =​ Ncrit, the contributions by the effective two-body 
attraction and the quantum pressure are the same in magnitude, and the droplet 
evaporates quickly. This evaporation process manifests itself as a decrease in peak 
density of at least one order of magnitude. Three-body losses are highly suppressed 
then, such that the atom number stays almost constant for an evaporated droplet.
Data availability. The data that support the findings of this study are available 
from the corresponding author upon reasonable request.
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