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Abstract
The simultaneous presence of two competing inter-particle interactions can lead to the
emergence of new phenomena in a many-body system. Among others, such effects are expected
in dipolar Bose–Einstein condensates, subject to dipole–dipole interaction and short-range
repulsion. Magnetic quantum gases and in particular Dysprosium gases, offering a comparable
short-range contact and a long-range dipolar interaction energy, remarkably exhibit such
emergent phenomena. In addition an effective cancellation of mean-field effects of the two
interactions results in a pronounced importance of quantum-mechanical beyond mean-field
effects. For a weakly dominant dipolar interaction the striking consequence is the existence of a
new state of matter equilibrated by the balance between weak mean-field attraction and beyond
mean-field repulsion. Though exemplified here in the case of dipolar Bose gases, this state of
matter should appear also with other microscopic interactions types, provided a competition
results in an effective cancellation of the total mean-field. The macroscopic state takes the form
of so-called quantum droplets. We present the effects of a long-range dipolar interaction between
these droplets.

Keywords: quantum liquids, quantum gases, quantum many-body systems

(Some figures may appear in colour only in the online journal)

Introduction

The field of dipolar gases has emerged more than ten years
ago, driven by the search for novel quantum many-body
phenomena that would arise from the peculiarity of the
dipole–dipole interaction: its long-range and anisotropic
character [1, 2]. This advent has lead to the observation of a
large span of dipolar effects at the many-body level ranging
from magnetostriction to collective excitations anisotropy or
demagnetization cooling, among others [3–17].

The theoretical treatment of harmonically trapped dipolar
bosonic gases is greatly simplified by applying an ansatz for
the atomic density distribution, assuming either a gaussian

distribution or an inverted parabola, solution of the Thomas–
Fermi approximation at the mean-field level. Though suc-
cessful in predicting dipolar phenomena such as magnetos-
triction, mean-field stability threshold and low-lying
excitation energies, fixing the density distribution freezes out
phase and density modulations within the atomic cloud. Thus
this effectively neglects effects related to excitations at finite
wavelength. However, learning from classical ferrofluids [18]
we know that in a magnetic fluid, it is finite-wavelengths that
lead to the Rosensweig or normal-field instability creating
stable surface modulations, thus they should also not be
neglected in a dipolar quantum system.

A dipolar Bose–Einstein condensate is subject to two
interparticle interactions, the contact interaction ( ) =rVc

( ) dp ra

m

4 2

with the scattering length a, and the dipole–dipole
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interaction (DDI)1 ( )= q-V a

m rdd
3 1 3 cos2

dd
2

3 with the dipole

length


= m m
p

a
m

dd 12
0

2

2 from which e = a add dd is defined. In
addition to this, the atoms are typically subject to an external
harmonic trapping potential. The first indication of the
important role of finite wavelength instability came with the
prediction of a ‘roton’ minimum in the dispersion relation of
the excitations of a flattened dipolar Bose gas [19]. A wealth
of theoretical studies suggested possible experimental evi-
dences for such roton modes [20–28], with in particular a
prediction of an instability of ‘angular roton’ modes in a
trapped flattened dipolar Bose gas [22, 29]. Such instability
stems directly from the long-range and anisotropic character
of the DDI.

Experimental observations

While the prediction for this instability, which differs in
nature from the one occurring in attractive Bose gases, has
been intensively studied theoretically, until recently it eluded
experimental observation. This instability occurs for lowering
the scattering length (increasing edd), thus requiring interac-
tion control through Feshbach resonances (FR) [30]. The
observation of this instability was mostly prevented by the
very short lifetime of chromium gases in the strongly dipolar
regime ( e 1dd ). This short lifetime of Cr gases results from
the fact that the condition e > 1dd is only fulfilled in the close
vicinity of the zero crossing (a=0) of a FR where three-
body losses are enhanced [5]. Degenerate quantum gases of
magnetic lanthanide atoms dysprosium and erbium, which
have been obtained in recent years [31–33] lifted this diffi-
culty by offering a gain of a factor 5–10 in add thus allowing
to work farther away from zero crossings. In addition, the
typical wavelength at which this instability occurs is of order
m1 m thus the need for a high spatial resolution imaging. Our

team in Stuttgart has developed a setup allowing for an
in situ imaging resolution of one micron. Whereas in the
case of Cr where the relative simplicity of the atomic
structure limits the number of FR and allows for their
understanding [34], the sub-merged open 4f shell of Lan-
thanide atoms creates a dense, strongly correlated distribu-
tion of resonances reminiscent of quantum chaos [35, 36],
beyond the reach of ab initio understanding. Experimental
efforts have thus been devoted to the understanding of
scattering properties and mapping of the Feshbach spectrum
of Dy and Er, [17, 35–40], rendering possible interaction
control for many-body studies.

We thus have been able to study the behaviour of BECs
in the vicinity of the transition between the short-range
dominated (e < 1dd ) and dipole dominated (e > 1dd ) regimes.
To do so we have placed the BEC in an oblate trap (pancake
configuration) with cylindrical symmetry around the dipoles
direction (aligned by the magnetic field B z). Our

observations have revealed the existence of an instability of a
trapped BEC, located close to e = 1dd . They are performed on
the positive a-tail of a FR with 164Dy, namely we are able to
tune the scattering length around the background value

( )=a a92 8bg 0 [38, 40]. However this was measured in spe-
cific magnetic field ranges, and in the vicinity of a particular
FR this value might differ, future precision measurements are
still needed. Nevertheless, a relative tunability of edd in the
vicinity of e = 1dd is experimentally available, far from this
point ( e 1dd , e 1dd ) Feshbach-enhanced three-body
losses hamper the lifetime of the atomic ensemble on a nar-
row FR.

Using our high-resolution in situ imaging, we have
observed the time evolution of the integrated density dis-
tribution after a quench of edd. Following the quench, we
observed the splitting of the density distribution into multiple
density peaks [41]. The finite-wavelength nature of the
instability was made clear by the appearance of a peak in
Fourier space, that remains after azimuthal averaging. This
character is directly due to the characteristics of the DDI, as
was predicted. The exact mechanism triggering the instability
remains to be determined, in particular the role of fluctuations
(thermal and quantum) should be explored, they are likely to
be this trigger. The very existence of this finite-wavelength
instability is a major benchmark of many-body dipolar phy-
sics, however a very interesting surprise was discovered in its
product. Indeed, the common wisdom in the field prior to our
observations, based on mean-field calculations, was that this
instability would be followed by a subsequent collapse of the
individual density peaks. In very stark contrast to this pre-
diction, the gas forms droplet ensembles that decay on very
long time scales, on the order of several tens to hundreds
of ms.

The long-range repulsive nature of the interaction
between the droplets is evident in images where we observe
the formation of quasi-triangular lattice structure at the level
of a few droplets. In order to verify that the confinement of
these droplets is not due to the repulsive interaction with
neighbouring droplets, and that the mechanism ensuring their
stability takes place locally within individual droplets, we
have placed them into a waveguide perpendicular to the
dipoles direction, without confinement along the waveguide’s
axis [42]. In this situation, the inter-droplet repulsion causes
them to fly away from each other, remaining both confined
and stable. An interesting result was obtained by adding a
weak harmonic confinement along the waveguide’s axis,
forcing the droplets to collide back on each other. In this case,
although the droplet ensemble creation is stochastic in nature,
resulting in different experimental conditions (number of
droplets, exact initial inter-droplet separation), we observe a
clear bouncing motion of the droplets on each other. This is
represented in figure 1, where one observes that the droplets
bounce off each other twice in the waveguide, as a result of
the dipolar repulsion that exists between them. In these
experiments we first created droplet ensembles in a crossed
trap in which they were tightly confined in all three directions,
before releasing them in a very weak elongated trap along the
x-axis with weak frequency n = 14.5 Hzx . This results in a

1 While the model presented here, based on the two simple interaction
potentials, is sufficient to describe the experimental results observed so far,
precise quantitative measurements might reveal new physics, in particular the
interaction potential could take a more subtle form.
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high initial amplitude of oscillation due to the initial repulsion
in the crossed trap. Using a simple model considering the
droplets as point-like dipoles linearized around the equili-
brium solution one can easily show that the expected fre-
quency for small oscillations is n +l 2x for a repulsive
potential with power2 law r1 l, thus a precise frequency
measurement at very low oscillation amplitude would
be an excellent test of dipolar repulsion between droplets
(for which l=3). Our measurements are performed at a
too large amplitude to observe this and thus show a
frequency close to n2 x which is expected for these amplitudes.
They also exhibit a strong damping. The mechanism for
this damping remains to be understood, it might be in part
due to friction with a remnant thermal fraction (this
fraction is hard to tell apart from BEC atoms not confined in
droplets), but could also originate from inelastic collisions
between droplets. At equilibrium obtained by adiabatically
transferring the droplets into the weakly trapping waveguide
we measure an equilibrium distance between the droplets

( ) m=d 2.5 5 meq . While point-like dipoles with dipole
moment m m= NN and mass =m NmN would equilibrate at

( )m m p w m= »d m3 2 4.5 mN0 N
2 2 1 5 , the elongation of the

droplets reduces their effective moment to lower values than
mN , where N is the number of atoms they contain. Knowing

N, we could obtain an upper bound on the droplet aspect
ratio defined as k = R Rr z: k 0.2 with Rr (Rz) the droplets
radius perpendicular (parallel) to the field direction. While
we have shown the existence of droplets and their interac-
tion, we now turn to the mechanism responsible for their
stability.

Mean-field analysis

Indeed, as a result of the anisotropy of the DDI and the
droplets elongation along the magnetic field, the effective
interactions at the mean-filed level are attractive. This can be
seen easily by expressing the mean-field energy density
e=E/V at the center of a droplet (cylindrical around the field

direction, with central density n0), neglecting the kinetic
energy as well as the trapping potential [21, 43]

( ) ( ( )) ( )e k= -e
gn

f0
2

1 , 1MF
0
2

dd

where p=g a m4 2 , and ( )kf is a decreasing function of κ
with ( )k =f 1 1, ( )k = -f 1 2, ( ) =f 1 0, this result
holds either for a gaussian or inverted-parabola density dis-
tribution in the droplet [21, 44, 45]. If e < 1dd , the situation is
stable independent of κ, energy is minimized by lowering
density, which will eventually be confined by the trap (gas-
like behaviour). For e > 1dd two situations can emerge; either
k 1, in which case the term in parenthesis is positive

leading to the same behaviour as before, or k 1 in which
case energy is minimized by increasing more and more the
density, leading to a collapse. One must note however that in
this situation for e 1dd , the two types of interactions
effectively ‘screen’ each other, reducing greatly the attraction
with respect to a purely dipolar situation. This qualitative
behaviour obtained by the simple equation (1) is confirmed by
a theoretical analysis including kinetic energy (quantum
pressure) and trapping potential, either making a gaussian
ansatz with which κ can be self-consistently calculated from
the trap aspect ratio l w w= z r, or using Gross–Pitaevskii
simulations. The exact value of λ for which the system
becomes unstable at a given edd can be thus obtained. How-
ever the conclusion remains: at e > 1dd , for the experimental
conditions k 0.2, the droplets should undergo collapse in
mean-field theory. In the next section we describe the
advances that have been made to explain this stability.

Beyond mean field theory

Prior to our observations, theoretical proposals suggested
different possible stabilization mechanisms for a collapsing
BEC. One was three-body repulsion [46]. Put simply, this
amounts to adding a mean-field term ∝n3 in equation (1),
originating from a three-body interaction. While easy to treat
theoretically, the appearance of this term at a significant
magnitude is hard to justify from a microscopic model of

Figure 1. Experimental observation of droplet collisions in a an elongated trap. Left: single-shot images of droplets oscillating in the
elongated trap at different times following a suddent transfer from a tight crossed trap (at t=0). The center of-mass motion has been
subtracted in these images to display clearly the relative motion of the droplets. The magnetic field axis is pointing out of the imaging plane,
thus the droplet elongation along this axis is not visible. Right: mean separation d between neighbour droplets as a function of time, the error
bars represent one standard deviation with 5 realisations per point, the gray dashed line is a guide to the eye representing a damped bouncing
motion at the trap frequency n = 14.5 Hzx .

2 The next order (nonlinearity) grows like (l+2)(l+3).
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interactions. Early theoretical analysis of the stable droplets
came up with three-body repulsion as a stabilization mech-
anism [47–49]. However another proposed stabilization
mechanism was beyond mean-field corrections [50, 51]. In
contrast to the former, this is not added by hand but emerges
naturally from quantum fluctuations/correlations, and in any
case the effects cannot be neglected [42]. Several different
groups, including the authors of [47–49] have now converged
towards quantum fluctuations as a sufficient stabilization
mechanism. To understand why, we will go on with our
simplified model that neglects both trapping potential and
kinetic energy, using the local density approximation (LDA).
In this case the correction to the mean-field energy has been
shown to be:

( ) ( ) ( )d
p

e=e
gn n a

Q0
2

128

15
, 2BMF

0
2

0
3

5 dd

where the fraction
p

n a128

15
0

3

is the celebrated Lee–Huang–
Yang result [52, 53] and the additional factor ( )eQ5 dd was
obtained by Lima and Pelster in [43, 54], following another
work [55]. This function Q5 is in general complex, however
in the experimentally relevant conditions e 1dd , the ima-
ginary part is very weak and we neglect it in the following.
However one needs to keep in mind that it can play a role,
notably by significantly destabilizing the system when

e 1dd . In the regime of interest, it is also usually sufficient
to take the lowest order expansion of ( )e e» +Q 15 dd

3

2 dd
2 .

We finally end up with a simple expression for the energy
density:

( ) ( ) ( )a b= +e
gn

n0
2

, 30
2

0

with ( )a e k= - f1 dd and
( )

b =
e

p

+a128 1

15

3 3

2 dd
2

, note

that b > " >a0 0.
In expression (3), it is evident now that when a < 0,

instead of collapsing, the density is stabilized by the addi-
tional term that has a stronger dependence on n0 (liquid-like
state). One can easily workout that the saturation density is

( )a bµn0
2, this tendency was confirmed in [42]. This

shows that different factors work at unison to reduce the
liquid-like phase density, first the screening of the two
interactions that significantly lowers α, second the amplifi-
cation of β by the dipolar interaction. This density reduction
is absolutely crucial because as it is most often the case in the
least dilute regime of ultracold atoms, the lifetime is limited
by density-dependent three-body losses (µá ñn2 ). Expression
(3) encompasses the main ingredients explaining the exis-
tence of the droplet phase, but of course quantitative agree-
ment can be obtained only when taking into account
contributions from the quantum pressure and the trapping
potexntial. In particular if one wants to describe both the
finite-wavelength collapse and the droplets stabilization, this
model is insufficient.

Usually, all these factors are taken into account per-
forming numerical simulations of the Gross–Pitaevskii
equation. Here, the additional term is beyond the GPE

description, in fact quantum fluctuations deplete the ground
state (the quantum depletion), by putting atoms in non-fac-
torizable entangled states, which in principle cannot be
described by a single field classical field theory (the GPE).
However this quantum depletion remains very small in our
regime [56], as a consequence, an effective classical field
theory can be built by adding a term that reproduces (2). This
has been employed in [56], and later-on in [57, 58], and
reproduces all the main features of our experiments. An
important verification of this method was performed in [59]
using path-integral quantum Monte Carlo, confirming its
validity. Here, we perform such simulations that reveal the
most important properties of the droplets and droplet
ensembles. The effective GPE reads:

( ) ( ) ∣ ( )∣

∣ ( )∣ ( )

( )∣ ( )∣ ( ) ( )




ò

y y

y

p
e y y

¶ = -


+ +

+ ¢ ¢ - ¢

+

⎡
⎣⎢

⎤
⎦
⎥⎥

r r r

r r r r

r r

m
V g

V

g a
Q

i
2

d

32

3
, 4

t

2 2

ext
2

2
dd

3

5 dd
3

where the last term accounts for quantum fluctuations and is
taken in the LDA. The time evolution of the wave function
under equation (4) is obtained using a usual split-step algo-
rithm [56, 58]. We study here the evolution of a BEC first at
rest in the elongated trap, then applying a quench in scattering
length from =a a131 0 down to =a a80 0. This differs from
the experimental procedure where the droplets are formed in a
tight trap before being released in the elongated trap. The
results from the simulations are presented in figure 2. We
observe the formation of an array of droplets, very similar to
the experimental observations presented earlier. In addition,
the simulations confirm the bouncing motion of the droplets
in the weakly trapping waveguide, where we have used the
experimental trapping frequency along the WG direction.
Thus the main features of the droplets array in the WG are
very well reproduced. The much lower amplitude with respect
to experiments (figure 1) is explained by the fact that the
simulations start with a BEC initially at rest. To confirm the
peculiar character of this novel state, we show below that it
differs from a normal BEC.

For this purpose, we study theoretically the properties of
a single droplet placed in a harmonic trap. First, it is
instructive to apply a variational gaussian ansatz for the wave
function, allowing to minimize the energy functional
corresponding to (4) [60]. One finds that in a trap, two energy
minima can exist, this can be easily understood by looking at
expression (3), indeed the first term allows for two situations,
k 1, and thus a > 0, the BEC is stabilized by dipolar

repulsion, and behaves like a gas in the sense that minimizing
energy is done by minimizing density. This first case can be
realized only if the trapping potential forces a pancake-like
shape to the cloud, thus only for high λ. Second, for k 1
thus a < 0, the cloud will be stabilized by quantum fluc-
tuations, at a fixed density, thus behaving more like a liquid.
This has been studied in details in [56–58]. To compare the
two cases, we study in figure 3 how the central density
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evolves when (i) the trap is compressed (left) and (ii) when
the atom number is increased (right). For (i) we keep the trap
aspect ratio constant, increasing the mean frequency
¯ ( )w w w= r z

2 1 3/ . We find a stark difference in behaviour: while
the gas-like phase behaves as expected, with a density
increasing with w̄, we obtain that the liquid-like phase density
is almost insensitive to the trap compression. In the case (ii),
that we study in an isotropic trap (l = 1), at low atom number
for the gaussian ansatz the density depends on N due to the
action of quantum pressure, but then reaches a plateau that
depends only very weakly on N as expected for a liquid-like
phase. For l = 1, the gas-like phase is not a solution of the
gaussian ansatz for the parameters used here. Finally we
perform a study of the ground state by imaginary-time evol-
ution of (4), which allows to confirm the qualitative results
obtained by the variational ansatz. Importantly, we find that
the variational ansatz method overestimates the central

density with respect to simulation results. This can be
understood by the fact that interactions flatten the density
distribution with respect to a gaussian ansatz [56–58].

The properties outlined here mark a strong difference
with all other systems observed in quantum gases, since they
are characteristic of an essentially incompressible liquid rather
than a gas. Indeed the very simple model (3) possesses a gas
to liquid phase transition at a = 0, characterized by a
divergence of the compressibility. A liquid differs from a gas
in that when placed in a given volume, it does not fill the
whole volume but remains self-bound. This self-bound liquid
is observed in the absence of trapping [61], as is expected
[57, 62]. While these droplets have been discovered in dipolar
Bose gases as recently confirmed with Erbium in the trapped
case [63], they are a manifestation of a generic phase that
emerges at low density when two competing interactions are
present. They should be observable for instance in mixtures of

Figure 2. Effective Gross–Pitaevskii equation (4) simulations result. Left and central panel show isodensity surfaces at 20% (red) and 1% of
the maximal density, the bottom images show integrated densities along the field direction. Left: at high scattering length (e = 1dd ), a BEC is
obtained with max density: ´ -2.2 10 m20 3, while in the center for e = 1.64dd the simulations result in the formation of droplets with
maximal density ´ -2.1 10 m21 3, similarly to the experimental results of figure 1. On the right one sees the time evolution of the mean next
neighbour spacing between the 5 droplets as a function of time, oscillating in a trap a the same frequency as the experimental one
n = 14.5 Hzx , showing a very similar behaviour as in figure 1. The data on the right panel have been obtained by a single simulation, the
points are the mean spacing between the five droplets obtained and the error bars show the standard deviation in the spacings.

Figure 3. Important features of the liquid-like droplet phase. Left: in the region of the phase diagram where both the BEC and droplet phase
coexist, central density using the gaussian ansatz as a function of mean frequency w̄ p2 for a trap aspect ratio l = 4, scattering length
a=75a0 and atom number N=5000. The inset shows a typical energy landscape at w̄ p =2 50 Hz as a function of radial and axial
gaussian sizes in microns, from which two minima emerge. The striking difference between these two phases is clearly visible, while the
BEC density scales as w̄6 5 as usual, the droplet density is nearly insensitive to the weak compression, behaving like a liquid. Right: droplet
density in an isotropic trap with w p =2 100 Hz, showing that the density reaches a plateau and becomes independent of the atom number.
Once kinetic energy effects can be neglected, the effective GPE results display a lower density as the gaussian ansatz.
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contact-interacting bosons [50]. Thus a new field of
exploration is opening in ultracold gases. The physics of these
liquid droplets can be put to test by measurement of collective
excitation frequencies, their superfluidity could be verified by
the observation of trapped vortices inside a single droplet.
These observation could allow to bridge this field with that of
liquid helium droplets [64], for which such collective modes
have been calculated, and vortices have been observed
[65, 66]. Experimentally, a trapping potential is no longer
necessary, which will lead to new possibilities, for instance in
terms of transport which can be realised with a simple
magnetic gradient.
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