

Prof. Dr. Mark Fromhold

(School of Physics and Astronomy, University of Nottingham)

Using quantum reflection from semiconductor surfaces to control electrons and ultra-cold atoms

I will show how the reflection of quantum-mechanical waves from semiconductor surfaces can provide sensitive control of electrons and ultra-cold atoms.

Firstly, I will focus on electrons in "superlattices", comprising alternating layers of different semiconductor materials. Multiple reflections of electron waves from the layer interfaces can create a unique type of chaotic electron motion. The abrupt onset of chaos produces a sharp increase in the measured current flow by creating unbound electron orbits, which propagate through intricate web patterns in phase space and imprint themselves on the quantum-mechanical wavefunctions.

Next, I will consider how room-temperature semiconductor surfaces can be used to manipulate atoms cooled to nK temperatures. At such low temperatures, quantum-mechanical reflection can shield the atoms from the disruptive influence of the surface. By considering recent experiments performed at MIT on Bose-Einstein condensates, I will show that inter-atomic interactions and the aspect ratio of the condensate both play a crucial role in the reflection process. I will also consider how surfaces that are etched on nanometre and micrometre scales can be used to increase the reflection probability and control the shape of the reflected atom cloud.

18. Mai 2007, 14:00 Uhr

Universität Tübingen, Raum D4A19 Auf der Morgenstelle 14, 72076 Tübingen