

Gregor Weihs

(Institut für Experimentalphysik, Universität Innsbruck, Austria and Institute for Quantum Computing, University of Waterloo, Canada)

Semiconductor sources of photon pairs

For fundamental tests of quantum physics as well as for quantum communications non-classical states of light are an important tool. In our research we focus on developing semiconductor-based and integrated sources of single photons and entangled photon pairs. In my talk I will present two approaches that we have been following towards this goal. In the first approach we demonstrate efficient photon pair generation in an AlGaAs Bragg-reflection waveguide. Spontaneous parametric down-conversion creates photon pairs at telecommunication wavelengths. The various phase-matching solutions present in our device can be used to create time-bin or polarization entanglement. This approach can to lead to a fully integrated photon pair source with the pump laser, active and passive optical devices all on a single semiconductor chip. In our second approach we use resonant two-photon excitation of a single InAs/GaAs quantum dot to deterministically trigger a biexciton-exciton cascade. We demonstrate Rabi oscillations, Ramsey interference and all-optical coherent control of the quantum dot resulting in single and paired photons with a high degree of indistinguishability. This indistinguishability results in time-bin entanglement, which is a useful variant for long distance communication.

21. Juni 2013. 14:00 Uhr

Universität Stuttgart, NWZII, Raum 2.136 Pfaffenwaldring 57, 70569 Stuttgart

