Sebastian Loth

(Max Planck Institute for the Structure and Dynamics of Matter, Hamburg)

Quantum correlations in atomically designed magnets

Magnetic atoms can interact with each other if they are placed into close proximity. By use of super-exchange coupling through a molecular frame such strong interaction can be achieved that the magnetic atoms respond coherently as one giant spin to external DC or AC magnetic fields. We use the tip of a low-temperature scanning tunneling microscope (STM) to address individual molecular magnets and probe their properties by inelastic electron tunneling spectroscopy and electronic pump-probe spectroscopy at GHz frequencies [1]. I will discuss two types of molecular magnets: single-molecule magnets sublimated onto a surface and atomic spin chains assembled atom by atom with the STM. Single-molecule magnets (SMMs) can be studied by farand near-field techniques which makes it possible to deduce how coupling to electric leads impacts their magnetism providing crucial information for design of molecular spintronics devices. Atomically assembled spin chains provide a high degree of design flexibility which allows us to study fundamental concepts of quantum magnetism [2] such as the size-dependent quantum phase transition between quantum-mechanical and classical magnetism [3] and the emergence of many-body states in linear spin chains. The combination of time-resolved inelastic electron tunneling spectroscopy with the high spatial resolution of the STM provides a new toolset to explore quantum correlations at the single atom level. [1] S. Loth, M. Etzkorn, C. P. Lutz, D. M. Eigler, A. J. Heinrich, Science 329, 1628 (2010). [2] S. Yan, D. J. Choi, J. Burgess, S. Rolf-Pissarczyk, S. Loth, Nature Nanotech. 10, 40 (2014). [3] F. Delgado, S. Loth, M. Zielinski and J. Fernández-Rossier, Europhys. Lett. 109 57001 (2015).

25. März 2015, 13:00 Uhr

Universität Stuttgart, NWZII, Raum 2.136 Pfaffenwaldring 57, 70569 Stuttgart

