Quantum phase transitions in cold gases

H.P. Büchler

Institut für theoretische Physik III, Universität Stuttgart, Germany

Atomic and molecular gases

Bose-Einstein condensation

- Gross-Pitaevskii equation
- non-linear dynamics

Rotating condensates

- vortices
- fractional quantum Hall

Quantum degenerate dilute atomic gases of fermions and bosons

Molecules

- Feshbach resonances
- BCS-BEC crossover
- polar molecules

Optical lattices

- Hubbard models
- strong correlations
- exotic phases

Quantum gases in optical lattices

Experimental groups

- I. Bloch, Mainz
- T. Porto, NIST
- T. Esslinger, ETH Zürich
- D. Weiss, Penn State
- R. Grimm, Innsbruck
- W. Ketterle, MIT
- M. Inguscio, Florence
- J. Dalibard, Paris
- K. Sengstock, Hamburg
- M. Oberthaler
- M. Greiner, Harvard
- K. Zimmermann, Tübingen

Theory groups

- ...

Quantum gases in optical lattices

Optical lattices

- properties of an optical lattice
- Bose-Hubbard model

Many-body theory

- Phase diagram
- Mean-field theory and effective theory
- 1D Bose-Hubbard model

Interaction between light and atoms

- Hamiltonian between atoms and light: dipole approximation

$$H = -\mathbf{d}\mathbf{E}(t, \mathbf{r})$$

- external laser field:
- rabi frequency: $\Omega = |\langle e | \mathbf{d} \mathbf{E}_\omega | g
 angle | / \hbar$
- detuning:

 $\mathbf{E}(t) = \mathbf{E}_{\omega} e^{-i\omega t} + \mathbf{E}_{\omega}^* e^{i\omega t}$

- AC Stark shift (change in the grounds state energy due to coupling to excited state)

Interaction between light and atoms

- spontaneous emission: Γ_e

excited state has a finite life time due to spontaneous emission

- AC Stark shift

$$\Delta E_g = \frac{\hbar \Omega^2 \Delta}{\Delta^2 + \Gamma_e^2/4}$$

- loss of atoms from the ground state

$$\Gamma_g = \frac{\Omega^2 \Gamma_e}{\Delta^2 + \Gamma_e^2/4}$$

- limits life-time of a BEC in an optical lattice
- requires large detuning

 $\Delta \gg \Gamma_e$

- high laser power

- a far-detuned standing laser wave provides a periodic potential for the particles

$$V(\mathbf{x}) = V_0 \cos(\mathbf{k}\mathbf{x})^2$$

 $E_r = rac{\hbar^2 k^2}{2m}$

- structure in 3D

$$\mathbf{E}(t,\mathbf{r}) = \sum_{i} \mathbf{E}_{\omega_{i}}^{i} \cos(\mathbf{k}_{i}\mathbf{r}) e^{-i\omega_{i}t} + c.c.$$

- \mathbf{k}_i : wave length fixed by the atomic transition
- ω_i : slightly different frequencies to cancel cross terms
- \mathbf{E}^i_ω : polarization as additional degree of freedom

$$\bigvee V(\mathbf{x}) = \sum_{i} V_i \cos(\mathbf{k}_i \mathbf{r})^2$$

Tricks with 2D optical lattice

J. Sebby-Strabley, M. Anderlini, P.S. Jessen, and J.V. Porto, Phys Rev. A 73, 033605 (2006)

$$V(\mathbf{x}) = V_0 \left[\cos(kx)^2 + \cos(ky)^2 \right]$$

in plane polarization cross terms disappear

$$V(\mathbf{x}) = V_0 \left[\cos(kx) + \cos(ky)\right]^2$$

- polarization along z-axes
- lattice with cross terms

combined lattice
 lattice of double wells

Many body Hamiltonian

Microscopic Hamiltonian

Many-body Hamiltonian

- pseudo-potential approximation
- field operator $\psi(x), \psi^{\dagger}(x)$

$$H = \int dx \ \psi^{+}(x) \left(-\frac{\hbar^{2}}{2m} \Delta + V(x) \right) \psi(x) + \frac{g}{2} \int dx \ \psi^{+}(x) \psi^{+}(x) \psi(x) \psi(x)$$
optical lattice
$$g = \frac{4\pi \hbar^{2} a_{s}}{m} \quad \text{:interaction strength of the Pseudo potential}$$

Derivation of effective low energy theory:

D. Jaksch, C. Bruder, J. I. Cirac, C. W. Gardiner, and P. Zoller, Rev. Lett. 81, 3108 (1998)

(i) Solve the single particle problem in an optical lattice

(ii) Add the interaction as perturbation

Hubbard model for Fermions and bosons

Magnetic Feshbach resonance

Feshbach resonances

- two interal states of the atoms:
 - open channel
 - closed channel (only virtually excited)
- bound state close to the continuum of the open channel
- tuning of the energy of the molecular state via magnetic field or Raman transition

$$a_{ ext{eff}} = a_s(1 + rac{\Delta
u}{E-E_{ ext{res}}})$$

$$\Delta
u$$
 : width of the resonance $u \!=\! E \!-\! E_{
m res}$: detuning

Single particle problem

lattice vector

Hamiltonian

- particle in a periodic potential

$$H = \frac{\mathbf{p}^2}{2m} + V(\mathbf{r}) \qquad V(\mathbf{r} + \mathbf{R}_i) = V(\mathbf{r})$$

- Bloch wave functions
 - $\phi_{n,\mathbf{k}}(\mathbf{r}) = e^{i\mathbf{k}\mathbf{r}}u_{n,\mathbf{k}}(\mathbf{r})$

 $E_n(\mathbf{k})$: energy dispersion \mathbf{k} : quasi momentum within
first Brillouine zone

- Bloch theorem

 $\phi(\mathbf{r} + \mathbf{R}_i) = e^{i\mathbf{k}\mathbf{r}}\phi(\mathbf{r})$

Wannier functions

Microscopic Hamiltonian

Hubbard model

- express the bosonic field operator in terms of Wannier functions

$$\psi(\mathbf{r}) = \sum_{i,n} w_n (\mathbf{r} - \mathbf{R}_i) b_{n,i}$$

creation/annihilation operator for particles at site *i* in band *n*

$$H = \int dx \ \psi^+(x) \left(-\frac{\hbar^2}{2m} \Delta + V(x) \right) \psi(x) + \frac{g}{2} \int dx \ \psi^+(x) \psi^+(x) \psi(x) \psi(x)$$

- restriction to lowest bloch bands
- only largest terms

Bose-Hubbard Model

Bose-Hubbard model (Fisher et al PRB '81)

Bose-Hubbard Model

Weak interactions

- the mixing of different Bloch-bands is suppressed for weak interactions

- Next-nearest-neighbor hopping
- small in the tight binding limit, but have to be included fore weak opitcal lattices

 $V_0 \lesssim E_r$

Nearest-neighbor interaction

- nearest-neighbor interactions are present, but are suppressed due to the decay of the wannier functions

$$U_1 \sim \int d\mathbf{r} |w(\mathbf{r})|^2 |w(\mathbf{r} - \mathbf{R}_i)|^2$$

Characteristic parameters

- wave length

 $\lambda \sim 1000 {\rm nm}$

- lattice spacing

 $a\sim 500 {
m nm}$

$$\begin{split} E_r = \frac{2\pi^2\hbar^2}{m\lambda^2} &\approx 9 \mathbf{k} \mathbf{H} \mathbf{z} \\ &\approx 430 \mathbf{n} \mathbf{K} \end{split}$$

 $U \approx 0.5 E_r$ $J \approx 0 - 0.5 E_r$

- temperatures $T_{\text{BEC}} \approx 1 \mu \mathbf{K}$ $T_{\text{min}} \sim 1 \mathbf{n} \mathbf{K}$ $(1 \mathbf{H} \mathbf{z} \equiv 50 \mathbf{p} \mathbf{K})$ Exchange coupling
 - anti-ferromagnetic coupling in a fermionic Hubbard model

- effective interaction can become extremely small
- extremely challenging for temperature and stability

Superfluid $J \gg U$

- weakly interacting Bose-Einstein condensate

$$\phi_{\scriptscriptstyle
m BEC} \sim \left(\sum_i b_i^\dagger
ight)^N \ket{0}$$

- linear excitation spectrum
- off-diagonal long-range

$$\langle \psi(\mathbf{r})\psi^{\dagger}(0)
angle
ightarrow n_{0}$$

Mott insulator $U \gg J$

- commensurate filling
- zero temperature phase
- fixed particle number per lattice site

$$\phi_{\scriptscriptstyle \rm Mott} = \prod_i b_i^\dagger |0\rangle$$

- -

 $\Delta \sim U$

- delocalized atoms - poisson statistic for number of atoms per lattice site

$$\widehat{}$$

- localized particles
- integer particles per lattice site

Quantum phase transition

Mott insulator

- commensurate filling
- gapped phase
- incompressible

Superfluid

- long-range order
- finite superfluid stiffness
- linear excitation spectrum

Mean-field theory
$$(d = \infty)$$

- critical value

$$U/J\Big|_{\scriptscriptstyle \mathrm{S-MI}} = z\left(n+\sqrt{n+1}
ight)^2$$

- qualitative correct even at low dimensions
- no particle-hole fluctuations in the Mott insulator

Experiments

Long-range order:

Disappearance of coherence for strong optical lattices (Greiner et al. '02)

$$\frac{V}{E_r} > 13$$

Structure factor

Appearance of well defined two particle excitations

Bose-Hubbard Model

 $b_{i}^{\dagger}b_{j} = \psi^{*}b_{j} + b_{i}^{\dagger}\psi - |\psi|^{2}$

local Hamiltonian $H_{\scriptscriptstyle
m BH} = \sum_i H_i$

- ground state is a product state

condensate , density

$$ho = \prod_i
ho_i \sim e_{ ext{matrix}} rac{1}{2}
ho_i
ightarrow e_{ ext{matrix}} \psi = \langle b_i
angle$$

- self-consistency

Long-Range order

- order parameter

$$\langle b_i b_j^\dagger
angle \longrightarrow n_0^{\prime}$$

- mean-field result

$$\langle b_i b_j^\dagger
angle = |\psi|^2 \equiv n_0$$

- zero-temperature

$$ho_i = |f
angle \langle f| \ |f
angle = \sum_n f(n) |n
angle$$

- the mean-field breaks the U(1) symmetry

- order parameter of the quantum phase transition

Mott Insulator

- localized particles
- integer particles per lattice site

 $|f
angle=|n_0
angle$

- realistic Mott-Insulator has particle-hole fluctuations

Superfluid phase

- off-diagonal long range order

 $\psi \neq 0$

- weak interactions:
 - locally a coherent state
 - condensate involves all particles

$$|f
angle = \exp\left(-|\psi|^2/2
ight)\exp\left(\psi b^\dagger
ight)$$

"mean-field" Mott insulator

\•/

particle-hole fluctuations

Phase transition

- appearance of $\psi \neq 0$ long-range order
- Ansatz across the transition

$$egin{aligned} |f
angle &= \sqrt{1-2\epsilon^2} |n_0
angle \ &+\epsilon \left(e^{i\phi} |n_0-1
angle + e^{-i\phi} |n_0+1
angle
ight) \ \psi &= 2e^{i\phi}\epsilon\sqrt{1-2\epsilon^2} \end{aligned}$$

- energy

$$\frac{E\left[\psi\right]}{U} = \left[1 - \frac{zJ}{U}\left(\sqrt{n_0} + \sqrt{n_0 + 1}\right)^2\right]|\psi|^2 + \beta|\psi|^4$$

phase transition at the change of the sign

Quantum phase transition

- critical value

$$U/J\Big|_{\mathrm{S-MI}} = z\left(n + \sqrt{n+1}\right)^2$$

- qualitative correct even at low dimensions
- no particle-hole fluctuations in the Mott insulator

Partition functionpropagator in
imaginary time
$$U = \exp\left(-\frac{itH_{\rm BH}}{\hbar}\right)$$
- $Z_{\rm B} = {\rm Tr}\left[\exp\left(-\frac{H_{\rm BH}}{T}\right)\right]$ $t = -i\tau$

- path integral formulation

$$Z_{\scriptscriptstyle \mathrm{B}} = \int \mathcal{D}\left[b_i(au)
ight] \mathcal{D}\left[b_i^{\dagger}(au)
ight] \exp\left(-\int_0^{1/T}d au\mathcal{L}_{\scriptscriptstyle \mathrm{B}}
ight)$$

- Lagrangian of the Bose-Hubbard model

$$\begin{split} \mathcal{L}_{\mathrm{B}} &= \sum_{i} \left[b_{i}^{\dagger} \partial_{\tau} b_{i} - \mu b_{i}^{\dagger} b_{i} + \frac{U}{2} b_{i}^{\dagger} b_{i}^{\dagger} b_{i} b_{i} \right] - J \sum_{\langle i,j \rangle} \left(b_{i}^{\dagger} b_{j} + b_{i} b_{j}^{\dagger} \right) \\ &= \sum_{i} b_{i}^{\dagger} \partial_{\tau} b_{i} + H_{\mathrm{BH}} \\ & \swarrow \end{split}$$
opposite sign due to

imaginary time

Hubbard Stratonovich Transformation

- Decoupling of the non-local term

$$\exp\left(\int_{0}^{1/T} d\tau \sum_{i,j} b_{i}^{\dagger} A_{i,j} b_{j}\right) \xrightarrow{\text{non-local} \text{hopping term}} A_{i,j} = \begin{cases} J & \langle i,j \rangle \\ 0 & \text{else} \end{cases}$$
$$= \int \mathcal{D} \left[\psi_{i}(\tau)\right] \mathcal{D} \left[\psi_{i}^{\dagger}(\tau)\right] \exp\left(-\int_{0}^{1/T} d\tau \left[\sum_{i,j} \psi_{i}^{\dagger} A_{i,j}^{-1} \psi_{j} - \sum_{i} \left(\psi_{i} b_{i}^{\dagger} + \psi_{i}^{\dagger} b_{i}\right)\right]\right)$$
$$(j) = \int \mathcal{D} \left[\psi_{i}(\tau)\right] \exp\left(-\int_{0}^{1/T} d\tau \left[\sum_{i,j} \psi_{i}^{\dagger} A_{i,j}^{-1} \psi_{j} - \sum_{i} \left(\psi_{i} b_{i}^{\dagger} + \psi_{i}^{\dagger} b_{i}\right)\right]\right)$$
effective field: order parameter guadratic term local term

Integrating out the bosons

$$\mathcal{L}_{\scriptscriptstyle \mathrm{B}} = \mathcal{L}_0 - \sum_i \left[\psi_i b_i^\dagger + \psi_i^\dagger b_i
ight] + \sum_{i,j} \psi_i^\dagger A_{i,j}^{-1} \psi_J$$

- local theory

$$\mathcal{L}_0 = \sum_i \left[b_i^\dagger \; \partial_ au b_i - \mu b_i^\dagger b_i + rac{U}{2} b_i^\dagger b_i^\dagger b_i b_i
ight]$$

- Greens function

$$G(i\omega_s) = -\langle T_{\tau}b_i(\tau)b_i^{\dagger}(0)\rangle = \frac{n_0 + 1}{i\omega_s + \mu - Un_0} - \frac{n_0}{i\omega_s + \mu - U(n_0 - 1)}$$

Effective theory

- continuum limes

$$Z_{\scriptscriptstyle \mathrm{B}} = \int \mathcal{D}\left[\psi(au, \mathbf{x})
ight] \left[\psi^{\dagger}(au, \mathbf{x})
ight] \exp\left(-\int_{0}^{1/T} d au \, \mathcal{L}_{\scriptscriptstyle \mathrm{B}}
ight)$$

- lagrangian

- symmetry:

change of sign determines phase transition

holes

Conclusion

Quantum phase transition in cold gases

- optical lattices
- realization of the Bose-Hubbard model

Description of the Bose-Hubbard model

- mean-field theory
- effective theory
- 1D system

Bose-Hubbard model in 1D

Why one dimension?

Interaction potential

- pseudo potential in 1D

$$V(x) = g\delta(x) = 2\hbar\omega_{\perp}a_s\delta(x)$$

- interaction strength

$$\gamma = \frac{E_{\rm int}}{E_{\rm kin}} = \frac{mg}{\hbar^2 n}$$

- homogoneous system is exactly solvable (Lieb and Liniger)
 - $\gamma \ll 1$: weakly interacting bosons
 - mean field theory
 - Bogoliubov theory

 $\gamma \gg 1$: Tonk gas limit

Bose-Hubbard model

 $V_0 > E_r$

Hamiltonian

$$H = \int dx \left[\psi^{+}(x) \left(-\frac{\hbar^{2}}{2m} \Delta + V(x) \right) \psi(x) + \frac{g}{2} \psi^{+}(x) \psi^{+}(x) \psi(x) \psi(x) \right]$$

• interaction strength $g = 2\hbar\omega_{T}a_{s}$
• external potential

$$V(x) = V \sin^{2}(kx) + V_{trap}(x)$$

$$E_{r} = \frac{\hbar^{2}k^{2}}{2m}$$
recoil energy $\lambda = k/2\pi$
Sine Gordon
model
 $V_{0} < E_{r}$
Superfluid to Mott insulator quantum
phase transition
 $V_{0} > E_{r}$
Bose-Hubbard
model
 $V_{0} > E_{r}$

Hydrodynamic description

• Bosonic field operator in terms of a long-wavelength density- and phase-field operator θ and ϕ (Haldane, '81)

commutation relation

$$\psi(x) \approx \sqrt{n + \partial_x \theta / \pi} \exp(i\phi)$$
 $\left[\phi(x), \partial_y \theta\right] = i\pi \delta(x - y)$

Hamiltonian (without optical lattice)

$$H_{0} = \frac{\hbar}{2\pi} \int dx \left[\mathbf{v}_{J} \left(\partial_{x} \phi \right)^{2} + \mathbf{v}_{N} \left(\partial_{x} \theta \right)^{2} \right]$$

 $v_s = \sqrt{v_J v_N}$

superfluid stiffness

inverse compressability

$$v_J = \pi \hbar n / m$$

$$v_N = \partial_n \mu / \pi \hbar$$

(Lieb and Liniger,'63)

• quasi long-range order

$$\langle \psi(x)\psi^{\dagger}(0)\rangle \sim |x|^{-1/2K}$$
 $K = \sqrt{v_J/v_N}$

sound velocity

$$K \left(\frac{\pi (\gamma - \gamma^{3/2} / 2\pi)^{-1/2}}{(1 + 2/\gamma)^2} \right)^{-1/2}$$

$$I \left(\frac{1 + 2/\gamma}{\gamma_c} \approx 3.5 \right)^{-1/2}$$

 $V_0 \lesssim E_r$

• Taking into account the discrete nature of the particles (Haldane, '81)

Sine-Gordon model

$$H = \frac{\hbar v_s}{\pi} \int dx \left\{ \frac{1}{2} \left[\frac{K}{(\partial_x \phi)^2} + \frac{1}{K} (\partial_x \theta)^2 \right] - \frac{Q}{2K} \partial_x \theta + \frac{u}{a^2} \cos(2\theta) \right\}$$

Three parameters

- Exactly solvable field theory
 - massive spinless fermions
 - U(1) symmetric Thirring model in a magnetic field

(Coleman, '75; Wiegmann, '78; Japardize et al., '84; Pokrovsky et al., '79; Kehrein, '99)

$$V_0 \lesssim E_r$$

Commensurate density Q=0

• Instability in the sine-Gordon model (Coleman, '75)

Kosterlitz-Thouless universality class

$$K_{c}(u) = 2(1+u)$$

$$\downarrow$$

$$V_{c}(\gamma) \approx E_{r}(\gamma^{-1} - \gamma_{c}^{-1})/5.5$$

Tonks gas $\gamma \rightarrow \infty$

• The bosons wave function maps to the wave function of free fermions in periodic potential (Girardeau,'60)

• At commensurate filling the fermions are a standard band insulator with a single particle gap $2\Delta = V/2$

Conclusion

Quantum phase transition in cold gases

- optical lattices
- realization of the Bose-Hubbard model

Description of the Bose-Hubbard model

- mean-field theory
- effective theory
- 1D system

