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Atomic and molecular gases

Quantum degenerate dilute
atomic gases of fermions and

bosons

Bose-Einstein condensation
   - Gross-Pitaevskii equation
   - non-linear dynamics

Rotating condensates
   - vortices
   - fractional quantum Hall 

Molecules
   - Feshbach resonances
   - BCS-BEC crossover 
   - polar molecules

Optical lattices
   - Hubbard models
   - strong correlations
   - exotic phases
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Optical lattices

- properties of an optical lattice
- Bose-Hubbard model

Quantum gases in optical lattices

Many-body theory

- Phase diagram
- Mean-field theory and effective theory
- 1D Bose-Hubbard model



Optical lattices



Interaction between light and atoms

- AC Stark shift (change in the grounds
  state energy due to coupling to excited state)

- Hamiltonian between atoms and light:
  dipole approximation

- external 
  laser field:

- rabi frequency:

- detuning:

blue detuned:

- low field seeker

red detuned:

- high field seeker
dynamical polarizability



Interaction between light and atoms

- AC Stark shift

- spontaneous emission:

excited state has a finite life time 
due to spontaneous emission

- loss of atoms from
  the ground state

- limits life-time of a BEC in an 
  optical lattice

- requires large detuning

- high laser power



Optical lattices

- a far-detuned standing laser wave provides
  a periodic potential for the particles

- recoil energy:

- structure in 3D

laser laser

: wave length fixed by 
  the atomic transition
: slightly different frequencies 
  to cancel cross terms

: polarization as additional 
  degree of freedom



Laser beams

high intensity

lower intensity

Optical lattices



laser

 square lattice

laser

 triangular lattice

Optical lattices

3D, 2D and 1D optical lattices

- dimensional crossover

Lattice geometries



Optical lattices

J. Sebby-Strabley, M. Anderlini, P.S. Jessen,
and J.V. Porto, Phys Rev. A 73, 033605 (2006)

Tricks with 2D optical lattice

- in plane polarization
- cross terms disappear

- polarization along z-axes
- lattice with cross terms

- combined lattice
- lattice of double wells



Many body Hamiltonian



Microscopic Hamiltonian

: interaction strength of
  the Pseudo potential

optical
lattice

Many-body Hamiltonian

- pseudo-potential approximation

- field operator 

Derivation of effective low energy theory:
D. Jaksch, C. Bruder, J. I. Cirac, C. W. Gardiner,
and P. Zoller, Rev. Lett. 81, 3108 (1998)

(i) Solve the single particle problem in
    an optical lattice

(ii) Add the interaction as perturbation

Hubbard model for
Fermions and bosons



Magnetic Feshbach resonance

Feshbach resonances

- two interal states of the atoms:
              - open channel
              - closed channel (only virtually excited)

- bound state close to the continuum of the
  open channel

- tuning of the energy of the molecular state via
  magnetic field or Raman transition

closed channel

open channel

: width of the resonance

: detuning

(Grimm et al., 03)



Single particle problem

Hamiltonian

- particle in a periodic potential

- Bloch wave functions

- Bloch theorem

lattice vector

: energy dispersion

: quasi momentum within 
  first Brillouine zone



Wannier functions

Strong optical lattice

- approximation as harmonic
  wave functions

- different behavior on long distances

Wannier functions

- localized wave function at
  each lattice site

- not uniquely defined



Microscopic Hamiltonian
Hubbard model

- express the bosonic field operator
  in terms of Wannier functions

hopping energy interaction energy

creation/annihilation
operator for particles at
site i in band n

- restriction to lowest bloch bands
- only largest terms



Coupling parameters in 1D

- onsite-interaction

- hopping energy

- validity

Bose-Hubbard Model

Bose-Hubbard model (Fisher et al PRB ‘81)

hopping energy interaction energy chemical potential
and trapping



Bose-Hubbard Model

Weak interactions

- the mixing of different Bloch-bands
  is suppressed for weak interactions

Next-nearest-neighbor hopping

- small in the tight binding limit, but have to be
  included fore weak opitcal lattices

Nearest-neighbor interaction

- nearest-neighbor interactions are present, but
  are suppressed due to the decay of the wannier
  functions



Energy scales

Characteristic parameters

- wave length

- lattice spacing

- temperatures

Exchange coupling

- anti-ferromagnetic coupling
  in a fermionic Hubbard model

- effective interaction can 
  become extremely small

- extremely challenging for
  temperature and stability



Phase diagram

Superfluid

- weakly interacting Bose-Einstein condensate

- linear excitation spectrum
- off-diagonal long-range

Mott insulator

- commensurate filling
- zero temperature phase
- fixed particle number per lattice site

- excitation gap

- delocalized atoms
- poisson statistic for number
  of atoms per lattice site

- localized particles
- integer particles per lattice site



Phase diagram

superfluid

MI

Superfluid

- long-range order
- finite superfluid stiffness
- linear excitation spectrum

Mott insulator

- commensurate filling
- gapped phase
- incompressible

Quantum phase transition

Mean-field theory

- critical value

- qualitative correct even at
  low dimensions

- no particle-hole fluctuations
  in the Mott insulator



Experiments

Disappearance of coherence for
strong optical lattices (Greiner et al. ‘02)

(Greiner et al., 02)

Long-range order:

Structure factor

Appearance of well defined
two particle excitations

(Esslinger et al., 04)



Mean-field theory



Bose-Hubbard Model

Bose-Hubbard model (Fisher et al PRB ‘81)

hopping energy interaction energy chemical potential

Mean-field ansatz:

- mean-field value:

- small fluctuations 
  around mean field:

- 

local Hamiltonian

number of particles 
is not fixed



Mean-field theory
Local Hamiltonian

- ground state is a product state

- self-consistency

number of 
nearest-neighbors

- zero-temperature

local density 
matrix

Long-Range order

- order parameter

- mean-field result

condensate 
density

- the mean-field      breaks 
  the U(1) symmetry

- order parameter of the quantum
  phase transition



Mean-field theory
Mott Insulator

- localized particles
- integer particles 
  per lattice site

- realistic Mott-Insulator
  has particle-hole fluctuations

“mean-field” Mott insulator

particle-hole fluctuations
Superfluid phase

- off-diagonal long range order

- weak interactions:
  - locally a coherent state

- condensate involves 
  all particles



Mean-field theory
Phase transition

- appearance of 
  long-range order

- Ansatz across the transition

- energy

phase transition at the 
change of the sign



Phase diagram

Quantum phase transition

- critical value

- qualitative correct even at
  low dimensions

- no particle-hole fluctuations
  in the Mott insulator



Effective field theory



Effective field theory

Partition function

-

- path integral formulation

- Lagrangian of the Bose-Hubbard model

propagator in 
imaginary time

opposite sign due to 
imaginary time



Effective field theory

Hubbard Stratonovich Transformation

- Decoupling of the non-local term

non-local 
hopping term

effective field: order parameter quadratic term local term



Effective field theory

Integrating out the bosons

- local theory

- Greens function



Effective field theory

Effective theory

- continuum limes

- lagrangian

- symmetry:
change of sign determines

phase transition



Effective field theory

superfluid

MI

Tip of the Lobe:

- density is continous

- leading term vaishes

- relevant dynamics

- universality class of the O(2)
  quantum rotor model

Lobe boundary:

- change in particle density
- relevant dynamics

- universality class
  of the dilute Bose-gas

Bose-Einstein condensation of excitations
(particles/holes) above the Mott insulator

particles

holes



Conclusion

Quantum phase transition
in cold gases

- optical lattices
- realization of the Bose-Hubbard
  model

Description of the
Bose-Hubbard model

- mean-field theory

- effective theory

- 1D system

superfluid

MI



Bose-Hubbard model in 1D

Superfluid

Mott insulator



Interaction potential

- pseudo potential in 1D

- interaction strength

- homogoneous system is exactly
  solvable (Lieb and Liniger)

Why one dimension?

- increased fluctutations in 1D
- strongly interacting regime 

: weakly interacting bosons
   - mean field theory
   - Bogoliubov theory

: Tonk gas limit



Bose-Hubbard model
Kühner and Monien, ‘98

MI

MI

MI
SF

• Transition line in the γ -V phase diagram

• Mean field (Krauth et al., ’92)

• With fluctuations (Kühner et al., ’98)

What happens in the strongly
interacting Bose gas?

Mapping to the Bose-
Hubbard model not valid.

Superfluid

Mott insulator



Bose-Hubbard
 model

• interaction strength

recoil energy

Superfluid to Mott insulator quantum
phase transition

Sine Gordon
 model

• external potential

Bose-Hubbard
 model

scattering length

Hamiltonian



Hydrodynamic description

superfluid stiffness

• Bosonic field operator in terms of a long-wavelength
  density- and phase-field operator θ and φ (Haldane, ’81)

• Hamiltonian (without optical lattice)

commutation relation

inverse compressability

• quasi long-range order

• sound velocity

(Lieb and Liniger,’63)



• Perturbation from a
  weak optical lattice

• Taking into account the discrete nature of  the particles
   (Haldane, ’81)

• Interaction
  Hamiltonian

Reduction to the
relevant term  Commensuration

Optical lattice



• Three parameters

• Exactly solvable field theory

Measures strength of fluctuations
in the density field θ

Induces a shift in the chemical
potential and drives the system
away from commensurability

Strength of the optical lattice

• massive spinless fermions
• U(1) symmetric Thirring model in  a magnetic field

(Coleman, ’75; Wiegmann, ’78; Japardize et al., ’84;
 Pokrovsky et al., ’79; Kehrein, ’99)

Sine-Gordon model



Commensurate density
with Q=0

Superfluid

Mott insulator

Commensurate-incommensurate
transition at fixed V

Tonks gas limit
with

Phase diagram



Commensurate density Q=0

SF
MI

SF

MI

• Instability in the sine-Gordon model (Coleman, ’75)

• Kosterlitz-Thouless universality class

SF

MI

Phase diagram



• The bosons wave function maps to the wave
  function of free fermions in periodic potential
  (Girardeau,’60)

• At commensurate filling the fermions are a
  standard  band insulator with a single particle
  gap

Tonks gas

MI
SF

SF

MI
Phase diagram



Conclusion

Quantum phase transition
in cold gases

- optical lattices
- realization of the Bose-Hubbard
  model

Description of the
Bose-Hubbard model

- mean-field theory

- effective theory

- 1D system

superfluid

MI


