Quantum phase transitions in fermionic systems

A. Muramatsu

Institut für Theoretische Physik III Universität Stuttgart

Sommerschule SFB/TRR21

A. Muramatsu (Universität Stuttgart)

Quantum phase transitions

Sommerschule SFB/TRR21

Outline

Introduction

- Understanding metals
- Fermi liquids

2 Break-down of a Fermi liquid

- Luttinger liquids
- BCS-BEC crossover
- Gauge fields
- Quantum critical point

3 Quantum phase transitions in fermionic systems

- Heavy fermions
- Organic superconductors
- High temperature superconductors

Summary

Outline

Introduction

- Understanding metals
- Fermi liquids

Break-down of a Fermi liquid

- Luttinger liquids
- BCS-BEC crossover
- Gauge fields
- Quantum critical point

- Heavy fermions
- Organic superconductors
- High temperature superconductors

First puzzle

A. Muramatsu (Universität Stuttgart)

э

First puzzle

Resistivity vs. temperature

A. Muramatsu (Universität Stuttgart)

э

First puzzle

Resistivity vs. temperature

$$ho \sim T^2$$

More degrees of freedom participate in conduction?

Specific heat vs. temperature

Less degrees of freedom are excited

A. Muramatsu (Universität Stuttgart)

Fermi-Dirac statistics

A. Muramatsu (Universität Stuttgart)

э

Fermi-Dirac statistics

Specific heat of a Fermi gas

$$c_V \sim N(E_F) k_B T$$

Fermi-Dirac statistics

Specific heat of a Fermi gas

 $c_V \sim N(E_F) \, k_B \, T$

Pauli paramagnetism

$$\chi = \frac{\partial M}{\partial H} = N(E_F) \,\mu_B$$

A. Muramatsu (Universität Stuttgart)

Fermi-Dirac statistics

$$c_V \sim N(E_F) k_B T$$

Pauli paramagnetism

$$\chi = \frac{\partial M}{\partial H} = N(E_F)\,\mu_B$$

Second puzzle: electrons are charged particles \hookrightarrow Coulomb interaction

A. Muramatsu (Universität Stuttgart)

3

æ

Weak interacting particles: $\begin{array}{ccc} Q &= e \\ S &= \frac{1}{2} \end{array}$

Weak interacting particles:

$$\begin{array}{rcl} Q & = & e \\ S & = & \frac{1}{2} \end{array}$$

Scattering rate close to a Fermi surface

Weak interacting particles:

$$\begin{array}{rcl} Q & = & e \\ S & = & \frac{1}{2} \end{array}$$

Scattering rate close to a Fermi surface

$$\mathcal{E} \leq \int_{E_F}^{E_F+\delta} darepsilon_1 \, N(arepsilon_1) \ imes \int_{E_F}^{E_F+\delta} darepsilon_2 \, N(arepsilon_2) \ imes N(arepsilon_1+arepsilon_2-arepsilon) \ imes \ [N(E_F)]^3 \, \delta^2$$

Weak interaction near E_F

э

-

• Ultra-cold atoms (⁶Li, ⁴⁰K) $\longrightarrow \sim 1 - 100 nK$

э

- Ultra-cold atoms (⁶Li, ⁴⁰K) $\rightarrow \sim 1 100 nK$
- ³He $\rightarrow \sim 100 mK$

3

- Ultra-cold atoms (⁶Li, ⁴⁰K) $\longrightarrow \sim 1 100 nK$
- ³He $\rightarrow \sim 100 mK$
- Heavy fermions $\longrightarrow \sim 10 100 K$

3

- Ultra-cold atoms (⁶Li, ⁴⁰K) $\longrightarrow \sim 1 100 nK$
- ³He $\rightarrow \sim 100 mK$
- Heavy fermions $\longrightarrow \sim 10 100 K$
- Ordinary metals $\longrightarrow \sim 10^3 10^5 K$

- Ultra-cold atoms (⁶Li, ⁴⁰K) $\longrightarrow \sim 1 100 nK$
- ³He $\rightarrow \sim 100 mK$
- Heavy fermions $\longrightarrow \sim 10 100 K$
- Ordinary metals $\longrightarrow \sim 10^3 10^5 K$
- White dwarfs $\longrightarrow \sim 10^7 10^{11} K$

3

- Ultra-cold atoms (⁶Li, 40 K) $\longrightarrow \sim 1 100 nK$
- ³He $\rightarrow \sim 100 mK$
- Heavy fermions $\longrightarrow \sim 10 100 K$
- Ordinary metals $\longrightarrow \sim 10^3 10^5 K$
- White dwarfs $\longrightarrow \sim 10^7 10^{11} K$
- Neutron stars $\longrightarrow \sim 10^9 10^{12} K$

- 3

э

Propagator of a particle

$$G = G_0 + G_0 \Sigma G_0 + G_0 \Sigma G_0 \Sigma G_0 + \cdots = G_0 (1 + \Sigma G) = (G_0^{-1} - \Sigma)^{-1}$$

э

Propagator of a particle

$$G = G_0 + G_0 \Sigma G_0 + G_0 \Sigma G_0 \Sigma G_0 + \cdots$$
$$= G_0 (1 + \Sigma G) = (G_0^{-1} - \Sigma)^{-1}$$
$$G(\mathbf{k}, \omega) = \frac{1}{\hbar \omega - \epsilon_{\mathbf{k}}^0 - \Sigma(\mathbf{k}, \omega)}$$

A. Muramatsu (Universität Stuttgart)

 \rightarrow

э

Propagator of a particle

$$G = G_0 + G_0 \Sigma G_0 + G_0 \Sigma G_0 \Sigma G_0 + \cdots$$

= $G_0 (1 + \Sigma G) = (G_0^{-1} - \Sigma)^{-1}$
$$G(\mathbf{k}, \omega) = \frac{1}{\hbar \omega - \epsilon_{\mathbf{k}}^0 - \Sigma(\mathbf{k}, \omega)} = \frac{z(\mathbf{k})}{\hbar \omega - \epsilon_{\mathbf{k}} + i\Gamma} + G_{\text{inc}}$$

 \rightarrow

э

Propagator of a particle

$$G = G_0 + G_0 \Sigma G_0 + G_0 \Sigma G_0 \Sigma G_0 + \cdots$$

= $G_0 (1 + \Sigma G) = (G_0^{-1} - \Sigma)^{-1}$
 $\hookrightarrow G(\mathbf{k}, \omega) = \frac{1}{\hbar\omega - \epsilon_{\mathbf{k}}^0 - \Sigma(\mathbf{k}, \omega)} = \frac{z(\mathbf{k})}{\hbar\omega - \epsilon_{\mathbf{k}} + i\Gamma} + G_{\text{inc}}$
 $\Rightarrow G_{\text{coh}}(\mathbf{k}, t) = \int_{-\infty}^{\infty} d\omega \, \mathrm{e}^{-i\omega t} \frac{z(\mathbf{k})}{\hbar\omega - \epsilon_{\mathbf{k}} + i\Gamma} = z(\mathbf{k}) \exp\left[-i\left(\epsilon_{\mathbf{k}} - i\Gamma\right)t\right]$

z(k): Quasiparticle weight

_

3

• Angle-resolved photoemission spectroscopy (ARPES) Spectral function

$$A(\mathbf{k},\hbar\omega) = -rac{1}{\pi} \mathrm{Im}\,G(\mathbf{k},\omega) = rac{z(\mathbf{k})\,\Gamma}{(\hbar\omega-\epsilon_{\mathbf{k}})^2+\Gamma^2}$$

 Angle-resolved photoemission spectroscopy (ARPES) Spectral function

$$A(\mathbf{k},\hbar\omega) = -\frac{1}{\pi} \operatorname{Im} G(\mathbf{k},\omega) = \frac{z(\mathbf{k})\Gamma}{(\hbar\omega - \epsilon_{\mathbf{k}})^2 + \Gamma^2}$$

 Angle-resolved photoemission spectroscopy (ARPES) Spectral function

$$A(\mathbf{k},\hbar\omega) = -rac{1}{\pi} \operatorname{Im} G(\mathbf{k},\omega) = rac{z(\mathbf{k})\Gamma}{(\hbar\omega - \epsilon_{\mathbf{k}})^2 + \Gamma^2}$$

Outline

Introduction

- Understanding metals
- Fermi liquids

Break-down of a Fermi liquid

- Luttinger liquids
- BCS-BEC crossover
- Gauge fields
- Quantum critical point

3 Quantum phase transitions in fermionic systems

- Heavy fermions
- Organic superconductors
- High temperature superconductors

Summary

Break-down of a Fermi liquid

Interaction singular in the infrared

э

• 1-D: Luttinger liquids

- 1-D: Luttinger liquids
- Resonance: BEC-BCS crossover

- 1-D: Luttinger liquids
- Resonance: BEC-BCS crossover
- Gauge-fields

- 1-D: Luttinger liquids
- Resonance: BEC-BCS crossover
- Gauge-fields
- QPT: Critical fluctuations
Interaction singular in the infrared

- 1-D: Luttinger liquids
- Resonance: BEC-BCS crossover
- Gauge-fields
- QPT: Critical fluctuations • Heavy fermions

Interaction singular in the infrared

- 1-D: Luttinger liquids
- Resonance: BEC-BCS crossover
- Gauge-fields
- QPT: Critical fluctuations
 - Heavy fermions
 - Organic superconductors

Interaction singular in the infrared

- 1-D: Luttinger liquids
- Resonance: BEC-BCS crossover
- Gauge-fields
- QPT: Critical fluctuations
 - Heavy fermions
 - Organic superconductors
 - High temperature superconductors

Metals in one dimension

Metals in one dimension Zero energy excitations for $q = 2k_F$

A. Muramatsu (Universität Stuttgart)

Metals in one dimension Zero energy excitations for $q = 2k_F$ $c_F \hookrightarrow \text{Diverging response at } 2k_F$

Vanishing quasiparticle weight

A. Muramatsu (Universität Stuttgart)

Sommerschule SFB/TRR21

Hole in a quantum antiferromagnet

$$\uparrow \downarrow \uparrow \downarrow \uparrow \downarrow \uparrow \downarrow \uparrow \downarrow \uparrow \downarrow \uparrow \downarrow$$

Hole in a quantum antiferromagnet

$$\uparrow \downarrow \uparrow \bullet \uparrow \downarrow \uparrow \downarrow \uparrow \downarrow \uparrow \downarrow$$

Hole in a quantum antiferromagnet

$$\uparrow \downarrow \uparrow^{\widehat{t}} \uparrow \downarrow \uparrow \downarrow \uparrow \downarrow \uparrow \downarrow$$

Hole in a quantum antiferromagnet

$$\uparrow \downarrow \bullet \uparrow \uparrow \downarrow \uparrow \downarrow \uparrow \downarrow \uparrow \downarrow$$

Hole in a quantum antiferromagnet

$$\uparrow \downarrow \bullet \uparrow \uparrow \downarrow \uparrow \downarrow \uparrow \downarrow \uparrow \downarrow$$

A. Muramatsu (Universität Stuttgart)

Hole in a quantum antiferromagnet

$$\uparrow \downarrow \bullet \uparrow \downarrow \uparrow \uparrow \downarrow \uparrow \downarrow$$

Hole in a quantum antiferromagnet

$$\uparrow \downarrow^{\widehat{\mathbf{t}}} \uparrow \downarrow \uparrow \uparrow \downarrow \uparrow \downarrow \uparrow \downarrow$$

Hole in a quantum antiferromagnet

Hole in a quantum antiferromagnet

Hole in a quantum antiferromagnet

Hole in a quantum antiferromagnet

$\begin{tabular}{c} \begin{tabular}{c} \end{tabular} \end$

Charge velocity $\sim t$ Domain wall velocity $\sim J$

Hole in a quantum antiferromagnet

$$\begin{tabular}{c} \begin{tabular}{c} \end{tabular} \end$$

Charge velocity $\sim t$ Domain wall velocity $\sim J$ \longrightarrow Charge-spin separation

Hole in a quantum antiferromagnet

$$\uparrow \bullet \downarrow \uparrow \downarrow \uparrow \downarrow \uparrow \downarrow \uparrow \downarrow$$

Charge velocity $\sim t$ Domain wall velocity $\sim J$ \longrightarrow Charge-spin separation

Holon: Q = -e, S = 0 **Spinon:** Q = 0, $S = \frac{1}{2}$

BCS-BEC crossover

A. Muramatsu (Universität Stuttgart)

BCS-BEC crossover

From weakly attractive to tightly bound pairs

BCS limit: Fermi liquid

BCS limit: Fermi liquid

BEC limit: no independent fermions

BCS limit: Fermi liquid

BEC limit: no independent fermions

Pseudogap at BCS-BEC crossover

Coexistence of single particles and preformed pairs

C. Chin et al, Science 305, 1128 (2004)

Gauge fields

A. Muramatsu (Universität Stuttgart)

æ

< 回 > < 三 > < 三 >

From Gauss-law: $v(\mathbf{q}) = \frac{4\pi e}{\mathbf{q}^2}$

æ

From Gauss-law: $v(\mathbf{q}) = \frac{4\pi e}{\mathbf{q}^2} \rightarrow \text{infrared divergent}$

물 🖌 🔺 물 🖌 👘

3

From Gauss-law: $v(\mathbf{q}) = \frac{4\pi e}{\mathbf{q}^2} \rightarrow \text{infrared divergent}$ Screening: $v(\mathbf{q}) = \frac{4\pi e}{\mathbf{q}^2 + \kappa^2}$, κ^{-1} : Thomas-Fermi screening length

코에 세명에 드림

From Gauss-law: $v(\mathbf{q}) = \frac{4\pi e}{\mathbf{q}^2} \rightarrow \text{infrared divergent}$ Screening: $v(\mathbf{q}) = \frac{4\pi e}{\mathbf{q}^2 + \kappa^2}$, κ^{-1} : Thomas-Fermi screening length \hookrightarrow effective short range interaction

From Gauss-law: $v(\mathbf{q}) = \frac{4\pi e}{\mathbf{q}^2} \rightarrow \text{infrared divergent}$ Screening: $v(\mathbf{q}) = \frac{4\pi e}{\mathbf{q}^2 + \kappa^2}$, κ^{-1} : Thomas-Fermi screening length \hookrightarrow effective short range interaction

Current-current interaction

$$H = \frac{1}{2m} \left(\mathbf{p} - \frac{e}{c} \mathbf{A} \right)^2 \quad \longrightarrow \quad \text{interaction} \sim \frac{v_F}{c}$$

No screening in the static limit

M.Yu. Reizer, Phys. Rev. B 40, 11571 (1989)

From Gauss-law: $v(\mathbf{q}) = \frac{4\pi e}{\mathbf{q}^2} \rightarrow \text{infrared divergent}$ Screening: $v(\mathbf{q}) = \frac{4\pi e}{\mathbf{q}^2 + \kappa^2}$, κ^{-1} : Thomas-Fermi screening length \hookrightarrow effective short range interaction

Current-current interaction

$$H = \frac{1}{2m} \left(\mathbf{p} - \frac{e}{c} \mathbf{A} \right)^2 \quad \longrightarrow \quad \text{interaction} \sim \frac{v_F}{c}$$

No screening in the static limit

M.Yu. Reizer, Phys. Rev. B 40, 11571 (1989)

$$c_v \sim \frac{v_F}{c} T \ln T + \mathcal{O}(T)$$

$$z \xrightarrow{T \to 0} 0$$

Emergent gauge fields

If $c \sim v_F$ possible \longrightarrow break-down of Fermi liquid

-

Emergent gauge fields

If $c \sim v_F$ possible \longrightarrow break-down of Fermi liquid

Quantum antiferromagnets

^ + + + + + + + + + +

э

Emergent gauge fields

If $c \sim v_F$ possible \longrightarrow break-down of Fermi liquid

Quantum antiferromagnets

^ + + + + + + + + +
If $c \sim v_F$ possible \longrightarrow break-down of Fermi liquid

Quantum antiferromagnets

<u>+++</u>++++++

If $c \sim v_F$ possible \longrightarrow break-down of Fermi liquid

Quantum antiferromagnets

If $c \sim v_F$ possible \longrightarrow break-down of Fermi liquid

Quantum antiferromagnets

If $c \sim v_F$ possible \longrightarrow break-down of Fermi liquid

Quantum antiferromagnets

^ + + + + + + + + + +

э

If $c \sim v_F$ possible \longrightarrow break-down of Fermi liquid

Quantum antiferromagnets

$\begin{tabular}{c} & & & \\ & & & & \\ & & & \\ & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & & \\ & & & & \\ & & & & \\ &$

If $c \sim v_F$ possible \longrightarrow break-down of Fermi liquid

Quantum antiferromagnets

If $c \sim v_F$ possible \longrightarrow break-down of Fermi liquid

Quantum antiferromagnets

 $\uparrow \uparrow \downarrow \uparrow \downarrow \uparrow \downarrow \uparrow \downarrow \uparrow \downarrow \uparrow \downarrow \uparrow$ \longrightarrow Deconfined spinons in 1D

If $c \sim v_F$ possible \longrightarrow break-down of Fermi liquid

Quantum antiferromagnets

If $c \sim v_F$ possible \longrightarrow break-down of Fermi liquid

Quantum antiferromagnets

 $\uparrow \uparrow \downarrow \uparrow \downarrow \uparrow \downarrow \uparrow \downarrow \uparrow \downarrow \uparrow \downarrow \uparrow$ \longrightarrow Deconfined spinons in 1D

\longrightarrow Linear confinement of spinons in 2D

Quantum critical point

Critical fluctuations

A. Muramatsu (Universität Stuttgart)

э

• At criticality $\xi \to \infty \longrightarrow$ infrared divergencies

3

• At criticality $\xi \to \infty \longrightarrow$ infrared divergencies

 \hookrightarrow correlations decay with a power law

• At criticality $\xi \to \infty \longrightarrow$ infrared divergencies

 \hookrightarrow correlations decay with a power law

• Interaction of fermions with critical mode

• At criticality $\xi \to \infty \longrightarrow$ infrared divergencies

 \hookrightarrow correlations decay with a power law

• Interaction of fermions with critical mode

 \hookrightarrow singular interaction in the infrared

- At criticality $\xi \to \infty \longrightarrow$ infrared divergencies
 - \hookrightarrow correlations decay with a power law
- Interaction of fermions with critical mode

 \hookrightarrow singular interaction in the infrared

• Large critical region around a quantum critical point

Outline

- Understanding metals
- Fermi liquids

Break-down of a Fermi liquid

- Luttinger liquids
- BCS-BEC crossover
- Gauge fields
- Quantum critical point

Quantum phase transitions in fermionic systems

- Heavy fermions
- Organic superconductors
- High temperature superconductors

• Compounds with d- and f-electrons

э

- Compounds with d- and f-electrons
- Large specific heat and Pauli susceptibility
 - $c_v \propto m^*$, $\chi \propto m^*$, $m^* \sim 100 m_e$

- Compounds with d- and f-electrons
- Large specific heat and Pauli susceptibility $c_v \propto m^*, \quad \chi \propto m^*, \quad m^* \sim 100 m_e$
- Extension of orbitals: $< r >_{n\ell} = \frac{1}{2}a_0 [3n^2 \ell(\ell+1)]$

- Compounds with d- and f-electrons
- Large specific heat and Pauli susceptibility $c_v \propto m^*, \quad \chi \propto m^*, \quad m^* \sim 100 m_e$
- Extension of orbitals: < r >_{nℓ} = ¹/₂a₀ [3n² ℓ(ℓ + 1)]
 → f-orbitals are very localized

- Compounds with d- and f-electrons
- Large specific heat and Pauli susceptibility $c_v \propto m^*, \quad \chi \propto m^*, \quad m^* \sim 100 m_e$
- Extension of orbitals: < r >_{nℓ} = ¹/₂a₀ [3n² ℓ(ℓ + 1)]
 → f-orbitals are very localized
 - \hookrightarrow localized magnetic moments

- Compounds with d- and f-electrons
- Large specific heat and Pauli susceptibility $c_v \propto m^*, \quad \chi \propto m^*, \quad m^* \sim 100 m_e$
- Extension of orbitals: $< r >_{n\ell} = \frac{1}{2}a_0 [3n^2 \ell(\ell + 1)]$
 - $\hookrightarrow \text{ f-orbitals are very localized}$
 - \hookrightarrow localized magnetic moments
- Localized f-states hybridizing with delocalized d-electrons

- Compounds with d- and f-electrons
- Large specific heat and Pauli susceptibility $c_v \propto m^*, \quad \chi \propto m^*, \quad m^* \sim 100 m_e$
- Extension of orbitals: $< r >_{n\ell} = \frac{1}{2}a_0 [3n^2 \ell(\ell + 1)]$
 - $\hookrightarrow \text{ f-orbitals are very localized}$
 - \hookrightarrow localized magnetic moments
- Localized f-states hybridizing with delocalized d-electrons
 → Kondo-lattice

Kondo screening

3 N 3

• High temperature: impurity scattering

- High temperature: impurity scattering
- Low temperature: impurity completely screened out by conduction electrons

- High temperature: impurity scattering
- Low temperature: impurity completely screened out by conduction electrons
 - \hookrightarrow Fermi liquid with one state less

- High temperature: impurity scattering
- Low temperature: impurity completely screened out by conduction electrons
 - \hookrightarrow Fermi liquid with one state less
- Crossover temperature: T_K Kondo temperature

- High temperature: impurity scattering
- Low temperature: impurity completely screened out by conduction electrons
 - \hookrightarrow Fermi liquid with one state less
- Crossover temperature: T_K Kondo temperature
- Heavy Fermi liquid formed when Kondo screening clouds overlap $\longrightarrow T_{coh}$ coherence temperature

Kondo lattice

RKKY interaction

3

Image: Image:

→ Exchange interaction among localized moments mediated by conduction electrons

→ Exchange interaction among localized moments mediated by conduction electrons

Kondo screening vs. RKKY interaction

← Exchange interaction among localized moments mediated by conduction electrons

Kondo screening vs. RKKY interaction

← Exchange interaction among localized moments mediated by conduction electrons

Kondo screening vs. RKKY interaction

A. Muramatsu (Universität Stuttgart)

Quantum critical points in heavy fermion systems

Quantum critical points, non-Fermi liquids, and superconductivity

P. Gegenwart, Q. Si, and F. Steglich, Nature Physics 4, 186 (2008)

A. Muramatsu (Universität Stuttgart)

Sommerschule SFB/TRR21

Quantum critical points in heavy fermion systems

Quantum critical points, non-Fermi liquids, and superconductivity

P. Gegenwart, Q. Si, and F. Steglich, Nature Physics 4, 186 (2008)

a QCP by doping

A. Muramatsu (Universität Stuttgart)
Quantum critical points, non-Fermi liquids, and superconductivity

P. Gegenwart, Q. Si, and F. Steglich, Nature Physics 4, 186 (2008)

a QCP by doping

b QCP by magnetic field

A. Muramatsu (Universität Stuttgart)

Sommerschule SFB/TRR21

Quantum critical points, non-Fermi liquids, and superconductivity

P. Gegenwart, Q. Si, and F. Steglich, Nature Physics 4, 186 (2008)

a QCP by doping

b QCP by magnetic field

c Non-Fermi liquid

Quantum critical points, non-Fermi liquids, and superconductivity

P. Gegenwart, Q. Si, and F. Steglich, Nature Physics 4, 186 (2008)

A. Muramatsu (Universität Stuttgart)

Non-Fermi liquid behavior

Non-Fermi liquid behavior

Specific heat close to a quantum critical point

Non-Fermi liquid behavior

Specific heat close to a quantum critical point

Non-Fermi liquid behavior

Specific heat close to a quantum critical point

 $\hookrightarrow \text{Additional entropy close to} \\ \text{the QCP}$

Non-Fermi liquid behavior

Specific heat close to a quantum critical point

 $\hookrightarrow \text{Additional entropy close to} \\ \text{the QCP}$

 Consistent with additional scattering channels for resistivity

Superconductivity

Superconductivity

Example: $CeCu_2(Si_{1-x} Ge_x)$ and $CeCu_2Si_2$

P. Gegenwart, Q. Si, and F. Steglich, Nature Physics 4, 186 (2008)

A. Muramatsu (Universität Stuttgart)

Sommerschule SFB/TRR21

Superconductivity

Example: $CeCu_2(Si_{1-x} Ge_x)$ and $CeCu_2Si_2$

P. Gegenwart, Q. Si, and F. Steglich, Nature Physics 4, 186 (2008)

• Superconducting dome around the QCP: general feature

Superconductivity

Example: $CeCu_2(Si_{1-x} Ge_x)$ and $CeCu_2Si_2$

P. Gegenwart, Q. Si, and F. Steglich, Nature Physics 4, 186 (2008)

- Superconducting dome around the QCP: general feature
- Unconventional order parameter for superconductivity

κ-(BEDT-TTF)₂Cu₂X

a Dimer sheet in κ-(BEDT-TTF)₂Cu₂(CN)₃ forming a triangular lattice

κ-(BEDT-TTF)₂Cu₂X

a Dimer sheet in κ-(BEDT-TTF)₂Cu₂(CN)₃ forming a triangular lattice

b Single BEDT-TTF molecule

κ-(BEDT-TTF)₂Cu₂X

a Dimer sheet in κ-(BEDT-TTF)₂Cu₂(CN)₃ forming a triangular lattice

- b Single BEDT-TTF molecule
- c Dimer at the sites of the triangular lattice

-

Hubbard model at half-filling on a triangular lattice vs. U/t

F. Kagawa, K. Miyagawa, and K. Kanoda,

Nature 436, 534 (2005)

Hubbard model at half-filling on a triangular lattice vs. U/t

F. Kagawa, K. Miyagawa, and K. Kanoda,

Nature 436, 534 (2005)

Hubbard model at half-filling on a triangular lattice vs. U/t

F. Kagawa, K. Miyagawa, and K. Kanoda, Nature **436**, 534 (2005)

Spin-liquid phase up to lowest temperatures

- Y. Kurosaki, Y. Shimizu, K. Miyagawa,
- K. Kanoda, and G. Saito,
- Phys. Rev. Lett. 95, 177001 (2005)

A. Muramatsu (Universität Stuttgart)

э

Critical temperature

A. Muramatsu (Universität Stuttgart)

Quantum phase transitions

Sommerschule SFB/TRR21

э

A. Muramatsu (Universität Stuttgart)

э

Structure

 $YBa_2Cu_3O_7 - T_c \simeq 95 K$

$Bi_2Sr_2CaCu_2O_8$ - $T_c \simeq 110~K$

Structure

 $YBa_2Cu_3O_7 - T_c \simeq 95 K$

$Bi_2Sr_2CaCu_2O_8$ - $T_c \simeq 110~K$

A. Muramatsu (Universität Stuttgart)

Phase diagram I

Phase diagram I

- Antiferromagnetic Mott-insulator without doping
- Decrease of c_V and χ

Pseudogap region in high T_c superconductors

A. Muramatsu (Universität Stuttgart)

Sommerschule SFB/TRR21

Pseudogap region in high T_c superconductors

Pseudogap region in high T_c superconductors

Nernst effect

A. Muramatsu (Universität Stuttgart)

Pseudogap region in high T_c superconductors

A. Muramatsu (Universität Stuttgart)

Sommerschule SFB/TRR21

Pseudogap region in high T_c superconductors

Pseudogap region in high T_c superconductors

A. Muramatsu (Universität Stuttgart)

Sommerschule SFB/TRR21

Pseudogap region in high T_c superconductors

A. Muramatsu (Universität Stuttgart)

Sommerschule SFB/TRR21

A. Muramatsu (Universität Stuttgart)

Quantum phase transitions

Sommerschule SFB/TRR21

Phase diagram I

Phase diagram I

● Nernst effect → preformed pairs

Phase diagram I

- Nernst effect \longrightarrow preformed pairs
- The pseudogap is due to the formation of pairs above T_c

Phase diagram I

- Nernst effect \longrightarrow preformed pairs
- The pseudogap is due to the formation of pairs above T_c
- Consistent with the absence of thermodynamic signals for a phase transition

- Nernst effect \longrightarrow preformed pairs
- The pseudogap is due to the formation of pairs above T_c
- Consistent with the absence of thermodynamic signals for a phase transition
- STM suggests: pseudogap and superconducting gap have the same origin

PG

VI.

SC

AF

FL

doping

Phase diagram II

A. Muramatsu (Universität Stuttgart)

Sommerschule SFB/TRR21

 ● PG-line corresponds to a spontaneous symmetry breaking → QCP hidden by the superconducting dome

A. Muramatsu (Universität Stuttgart)

Т

Sommerschule SFB/TRR21

- PG-line corresponds to a spontaneous symmetry breaking → QCP hidden by the superconducting dome
- Quantum critical region →
 anomalies in the normal state

т

Pseudogap region in high T_c superconductors

- PG-line corresponds to a spontaneous symmetry breaking → QCP hidden by the superconducting dome
- Quantum critical region →
 anomalies in the normal state
 - Which symmetry breaking?

т

Nematic electronic liquid

V. Hinkov et al., Science 319, 597 (2008).

Nematic electronic liquid

V. Hinkov et al., Science 319, 597 (2008).

Nematic order

Nematic electronic liquid

V. Hinkov et al., Science 319, 597 (2008).

Time reversal symmetry breaking I

J. Xia et al., Phys. Rev. Lett. 100, 127002 (2008).

 Polar Kerr-effect → parity or time reversal symmetry breaking

Time reversal symmetry breaking I

J. Xia et al., Phys. Rev. Lett. 100, 127002 (2008).

- Polar Kerr-effect → parity or time reversal symmetry breaking
- Non-zero signal at temperatures around the pseudogap T*

Time reversal symmetry breaking II

H.A. Mook et al., arXiv:0802.3620

 Neutron scattering with polarized neutrons
 → magnetic ordering

Time reversal symmetry breaking II

H.A. Mook et al., arXiv:0802.3620

- Neutron scattering with polarized neutrons
 → magnetic ordering
- Non-zero signal at temperatures around the pseudogap T*

Time reversal symmetry breaking II

H.A. Mook et al., arXiv:0802.3620

- Neutron scattering with polarized neutrons
 → magnetic ordering
- Non-zero signal at temperatures around the pseudogap T*
- Possible origin: orbital currents

Outline

• Understanding metals

• Fermi liquids

Break-down of a Fermi liquid

- Luttinger liquids
- BCS-BEC crossover
- Gauge fields
- Quantum critical point

3 Quantum phase transitions in fermionic systems

- Heavy fermions
- Organic superconductors
- High temperature superconductors

Summary

A. Muramatsu (Universität Stuttgart)

æ

イロト イポト イヨト イヨト

• Fermi liquid is the rule for a fermionic system

A. Muramatsu (Universität Stuttgart)

Quantum phase transitions

Sommerschule SFB/TRR21 39 / 40

3 N 3

- Fermi liquid is the rule for a fermionic system
- Need singular interactions in the infrared to break down the Fermi liquid

- Fermi liquid is the rule for a fermionic system
- Need singular interactions in the infrared to break down the Fermi liquid
 - ← Quantum critical points offer a possibility

- Fermi liquid is the rule for a fermionic system
- Need singular interactions in the infrared to break down the Fermi liquid
 - ← Quantum critical points offer a possibility
- Realizations in solid-state with strong correlation

- Fermi liquid is the rule for a fermionic system
- Need singular interactions in the infrared to break down the Fermi liquid
 - ← Quantum critical points offer a possibility
- Realizations in solid-state with strong correlation
 - ← close to antiferromagnetic ordering or to a Mott-insulator

- Fermi liquid is the rule for a fermionic system
- Need singular interactions in the infrared to break down the Fermi liquid
 - ← Quantum critical points offer a possibility
- Realizations in solid-state with strong correlation
 - ←→ close to antiferromagnetic ordering or to a Mott-insulator
- In electronic systems: $QCP \leftrightarrow$ superconductivity

- Fermi liquid is the rule for a fermionic system
- Need singular interactions in the infrared to break down the Fermi liquid
 - ← Quantum critical points offer a possibility
- Realizations in solid-state with strong correlation
 - ←→ close to antiferromagnetic ordering or to a Mott-insulator
- In electronic systems: QCP ↔ superconductivity
 - \hookrightarrow unconventional superconductivity

- Fermi liquid is the rule for a fermionic system
- Need singular interactions in the infrared to break down the Fermi liquid
 - ← Quantum critical points offer a possibility
- Realizations in solid-state with strong correlation
 - ←→ close to antiferromagnetic ordering or to a Mott-insulator
- In electronic systems: $QCP \leftrightarrow$ superconductivity
 - ← unconventional superconductivity
- Open questions:

- Fermi liquid is the rule for a fermionic system
- Need singular interactions in the infrared to break down the Fermi liquid
 - ← Quantum critical points offer a possibility
- Realizations in solid-state with strong correlation
 - ← close to antiferromagnetic ordering or to a Mott-insulator
- In electronic systems: $QCP \leftrightarrow$ superconductivity
 - ← unconventional superconductivity
- Open questions:
 - New quasiparticles?

- Fermi liquid is the rule for a fermionic system
- Need singular interactions in the infrared to break down the Fermi liquid
 - ← Quantum critical points offer a possibility
- Realizations in solid-state with strong correlation
 - ←→ close to antiferromagnetic ordering or to a Mott-insulator
- In electronic systems: $QCP \leftrightarrow$ superconductivity
 - ← unconventional superconductivity
- Open questions:
 - New quasiparticles?
 - Mechanism for superconductivity?

Further reading:

Nature Physics 4 (2008). Reviews on quantum phse transitions

"Fermi-liquid instabilities at magnetic quantum phase transitions" H. v. Löhneysen, A. Rosch, M. Vojta, and P. Wölfle Reviews of Modern Physics **79**, 1015 (2007)