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» Quantum coherence certainly exists at the level of chemical bonds

Electrons are delocalized in a coherent
superposition

For us this kind of coherence is of little
relevance !

Its in equilibrium , static, short-ranged

» More interesting is (transport) dynamics because

» You learn about systems by poking them.
» Biological processes are necessarily dynamic.

» Has the potential to explore long range correlations.
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» Questions:

» On what length and time scales do we find
coherence ?

» What, If any, is the role of coherence ?

» What, If any, Is the role of the environment ?
» Can one quantify coherence and quantum character ?

» How do | verify theoretical hypotheses experimentally ?
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Excitation Transport in Noisy Environments
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citon Transport in Photosynthesis

Green sulphur Bacteria
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Excitation Transport

Green sulphur Bacteria
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Exchange of excitation

N
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Exchange of excitation
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N
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se Assisted Transport
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ssisted Transport
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onstruct the FMO Hamiltonian

Excitonic states that are excited have small overlap with sink.
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ruct the FMO Hamiltonian

Excitonic states that are excited have small overlap with sink.
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Deconstructing Coherence and Decoherence
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Destructive Interference and Invariant States
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e Interference and Invariant States
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Dits Destructive Interference
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)its Destructive Interference
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Noise bridges energy gaps

Energy




Blaubeuren, 4th October 2010

Coherence shifts resonances
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oherence shifts resonances
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the FMO Hamiltonian
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where we have shifted the zero of energy by 12230 (all numbers are given in the units
of 1.988865 x 107> nm = 1.2414 x 10=*eV) for all sites corresponding to a wavelength of
=800 nm.

Can test the relevance of structural elements for dynamics by
selectively adding noise in computer simulation, but ...

... test in real system would be more convincing
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dDl for experimental tests
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ment Description

Need description of the dynamics of complex
guantum systems in the presence of intermediate noise levels

» Master equation approaches (perturbative)
not accurate as interaction is comparable to intersite
Interaction

» Nakajima-Zwanzig (time non-local)
In principle exact but impossible to solve

» Hierarchy methods
hard for arbitrary spectral densities

Ishizaka & Fleming, J. Chem. Phys. 2009
Ishizaki et al, Phys Chem Chem Phys 2010

» Transformation techniques
Efficient but correlated noise may be challenging

Prior, Chin, Huelga, Plenio, PRL 2010
Chin, Rivas, Huelga, Plenio, J Math Phys 2010
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nvironment Description

Evolution equation of global system
p=Lp

P
We are interested in dynamics of the system only = #p
d
%L@?’p=gf’L§?’p+§?’L(1 —P) p

d

E-E(l—?)p=(1—.@) L1-=P)p+(1—-P)LPp
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nvironment Description

Evolution equation of global system
p=Lp

P
We are interested in dynamics of the system only = #p
d
dtéﬁ’p PLPp+PL(1—-P)p

d

E(l—?}p=(1 —PYL(1—-P)p+(1—-P)LPp

d
= Pp()=2LPp() +jd1:§?’Le“ A1 —P) LP p(t—1)
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vironment Description

Evolution equation of global system
p=Lp
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We are interested in dynamics of the system only = #p
d
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vironment Description

Evolution equation of global system
p=Lp

Ro

(
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We are interested in dynamics of the system only = #p
d
dtéﬁ’p PLPp+PL(1—-P)p

d

E(l—?}p=(1 —PYL(1—-P)p+(1—-P)LPp

d
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vironment Description

p=Lp

Evolution equation of global system

We are interested in dynamics of the system only = #p

dt
d

dt

dt

4 Ppt)y=PLPp(t) +| dz

d
— Pp=PLPp+PL(L—P)p

{

0

—(1=P)p=(1-PYL(1-P)p+(1-P)LPp

PLeY D1 —P) LP p(t —1)




m ulm university ﬂeﬁlljlm Blaubeuren, 4th OCtOber 2010

system

& N i Evolution equation of global
& —F p=Lp
——
S —

P

We are interested in dynamics of the system only = #p

d
ﬁéﬁp=£?’Lﬁap+§?‘L(1 —P) p

%(1—?}p=(1—@) LA-Z)p+(1-2)LPp

dt

d {
—Pp(t)y=PLPp(t) +| dt PLe'~N(1 - P) L
0

D 4

perturbative <=  Gives Lindblad/Redfield p(z)



ﬁ ulm university ﬁerﬁlm Blaubeuren, 4th OCtOber 2010

ment Description

Hierarchy method aims to replace integral solution by a set of coupled
differential equations with auxiliary operators.

- Has been applied successfully for specific spectral densities (FMO ..)

- Number of elements in hierarchy can grow rapidly

- Coefficients can be hard to compute for general spectral densities

- Error in cut-off not known e T o
System

Auxiliary 1

Auxiliary 11

Would like method with controllable and certifiable
error that keeps all available information.
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] the spin-boson model

Aim: Full many-body simulation, treat system and bath on equal footing for
arbitrary bath spectral densities

Method of choice for 1-D systems: T-DMRG — Numerically exact method for

highly-correlated many-body systems in 1D
OwWwW VWW

&%

J Problem: Geometry of spin-boson model is not

0} fio T-DMRG friendly
Fi%



& W TS ﬁﬁlm Blaubeuren, 4t October 2010

he spin-boson model

Aim: Full many-body simulation, treat system and bath on equal footing for
arbitrary bath spectral densities

Method of choice for 1-D systems: T-DMRG — Numerically exact method for

highly-correlated many-body systems in 1D
W WW to t1 to

oy L) Qg

J to  t t,
o c ® o (GH €&n

J Previous implementations — discrete,
% f numer|ca| Iy unStable Bulla, Tong & Vojta, Phys. Rev. Lett. 2003,
Bulla, Lee, Tong, & \Vojta, Phys. Rev. B 2005.
CNW WW
dgl’ ‘!xb New — Analytical mapping with
orthogonal polynomials

Prior, Chin, Huelga, Plenio, PRL 2010
Chin, Rivas, Huelga, Plenio, J Math Phys 2010
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discrete) orthogonal polynomials

Hies = / drg(r)ala, V = / drh(x)A(ay +al)
0 0
"~ sually
g(x) = g

Goal: Find new modes

bl = / du Uy (z)al, Each Up(X) can be considered
0 a (orthonormal) polynomial !

such that

coA(bo+b)+ Y wnblibn+tnbl 1 by+tnblbn i

n=>0
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Still need to find the orthogonal polynomials

For each choice of scalar product (hence spectral density) these
are uniquely determined and there are recursion relations.

Numerics: OrthPol determines Analytics: For many spectral
these and Is numerically stable densities we know recursions

W. Gautschi, ACM Trans Math Soft. 1994 exactly
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OPs are Laguerre Recurrence coefficients
Polynomials known analytically

wn = we(2n+1+s),

: th = wer/(n+1)(n+ 5+ 1)
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_ _ w _ dg~Hw
J(w) = 2rawl Swie  we =mh* (g7 (w)) dw( )
OPs are Laguerre Recurrence coefficients
Polynomials known analytically
Formulae show that = : We
lim €, —
TL— OO
. w
! lim ¢, — —
n— 00 4
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in of asymptotic behaviour

Excitations propagate away from
system — Irreversibility.

= | Diagonalise asymptotic chain
08 4 w

07} . W = ?C(l — COS(T(-k))

Zj: | Asymptotic recurrence

03 | coefficients give uniform

02} 1 chain with gapless dispersion
N £ | andbandwidth w,
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of asymptotic behaviour

Encodes spectral density

Excitations propagate away from
system — Irreversibility.

= | Diagonalise asymptotic chain
08 4 w

07} . WE = ?C(l — COS(T(—k))

Ej: | Asymptotic recurrence

03 | coefficients give uniform

02} 1 chain with gapless dispersion
N s | andbandwidth w,
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e on Noise Strength
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Optimal noise level is such that some coherence surivives

System halfway between guantum and classical world !
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Entanglement

Caruso, Chin, Datta, Huelga, Plenio, J. Chem. Phys. 2009

Caruso, Chin, Datta, Huelga, Plenio, PRA 2010
& many colleagues since

Blaubeuren, 4t October 2010

B Slaubeuren, 4" October 2010
sus Quantum: Take I

Quantify entanglement/coherence of states and coherence

Agree on subsystems

Define quantity that
decreases under local
operations

Draw plot & analyze

Is locality requirement
natural here ? Why
consider entanglement
when dynamics is non-
local ?
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& many colleagues since

Tutorial Review:

Plenio & Virmani, QIC 2007 O,’

Blaubeuren, 4t October 2010

. Slaubeuren 4" October 2010
s Quantum: Take I

QuantifyI Gentanglement/coherence of states and coherence

Agree on subsystems

Define quantity that
decreases under local
operations

Draw plot & analyze

Is locality requirement
natural here ? Why
consider entanglement
when dynamics is non-
local ?

Consider the power of
evolution to generate
entanglement.

—> Entangling power
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sical versus Quantum: Take II

When is a dynamics classical/quantum ?

p > |Evolution| [ > S(p)
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s Quantum: Take II

When is a dynamics classical/quantum ?

p > |Evolution > S(p) =Y tr[pM;]o;

Owari, Serafini, Polzik, Wolf, Plenio, NJP 2008, Nat Phys 2010

Is classical if we can replace box my demon that measures and
reprepares the state.

Classical states can be perfectly distinguished and reprepared
while guantum states cannot.
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5 Quantum: Take II

When is a dynamics classical/quantum ?

p > |Evolution > S(p) =Y tr[pM;]o;

Owari, Serafini, Polzik, Wolf, Plenio, NJP 2008, Nat Phys 2010

Is classical if we can replace box my demon that measures and
reprepares the state.

Classical states can be perfectly distinguished and reprepared
while guantum states cannot.

P j1> Evolution > |Evolution > man

5(p) 5(s(p))
At At
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ical versus Quantum: Take I1I

When is the action of the environment classical/quantum ?

Evolution

> s()
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s Quantum: Take 11

When is the action of the environment classical/quantum ?

P j1> Evolution j1> 5(p)zzi UIpUi*

Is classical if we can replace environment by demon that picks
random number and applies associated random unitary.

No quantum correlations are built up with environment and
dynamics of environment is classical
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Quantum: Take I1

When is the action of the environment classical/quantum ?

P j1> Evolution j1> S(p) =Y UIpUi*

Is classical if we can replace environment by demon that picks
random number and applies associated random unitary.

No quantum correlations are built up with environment and
dynamics of environment is classical

P > |Evolution > |Evolution

5(p) 5(s(p))
At At

Rivas, Audenaert, Plenio, Huelga, in preparation
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Transport dynamics at bio-molecular level exhibits important
Interplay between coherence and environmental noise.




ulm university uu ljlm Blaubeuren, 4th OCtOber 2010

mmary

Transport dynamics at bio-molecular level exhibits important
Interplay between coherence and environmental noise.

Optimal performance
for intermediate levels
of noise, in which
master equations or
rate equation are
Inaccurate.

Develop numerial and
analytical methods for
this regime from QI &
condensed matter
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ary

Transport dynamics at bio-molecular level exhibits important
Interplay between coherence and environmental noise.

Optimal performance For optimal performance
for intermediate levels system sits between

of noise, in which classical and quantum
master equations or regime

rate equation are

Inaccurate.

Quantify entanglement,
coherence and quantum
Develop numerial and character of evolution
analytical methods for using QI methods
this regime from QI &
condensed matter
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