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Successes of Quantum Information Science

• Discovery of the power of quantum
mechanics for information processing

-new language for
quantum mechanics

• Discovery of how to control quantum systems

• Proof-of-concepts experiments

Why QEC?
We are not perfect (!):
If a computation takes k gates, the error per gate is p and
these errors are independent from gate to gate the probability
of success is (1 − p)k an exponential decaying probability as a
function of the number of gates.

Origin of the noise:

• Imprecise control on the system:

U = e−iπ+δ
4 Z

• The system is not totally isolated

U = e−iεZ1Z2

• We are losing our qubits

|Ψ〉 → nothing

• . . .

The Death of Q Computers... (1995) Independent error model
Let’s assume we have a symmetric error model,
independent from one bit to another

With probability (1-p): 0 ⇒ 0 ; 1 ⇒ 1
With probability p: 0 ⇒ 1 ; 1 ⇒ 0

0

01

1

Space of 1 classical bit



1 bit: classical errors

Error model (lossless)

With probability (1-p): 0 ⇒ 0
With probability (1-q): 1 ⇒ 1
With probability p: 0 ⇒ 1
With probability q: 1 ⇒ 0

Note: if we have more than one bit we have to learn about
correlations between the errors

Independent error model
Thus if we take 3 bits and encode 0 into 000 and 1 into 111 we
will have

000 →






000 (1 − p)3

001
010
100




 p(1 − p)2

011
110
101




 p2(1 − p)

111 p3

and an analogous effect on 111.
Let’s make the assumption that p << 1 and thus we can neglect
the second order term in p. Then under the influence of the noise
we have the following effect:

000

001

100 110

010

101

011

111

Space of 3 classical bits

Note that the messages and their corresponding corrupted ver-
sions do not overlap, i.e. the 000 with corrupted version 001, 010, 100
does not overlap with 111 or 110, 101, 011. Thus it is possible
to “undo” the effect of the noise by resetting the bits to the
one obtain by taking a majority vote of the 3 bits at end. This
resets 000, 001, 010, 100 to 000 and 111, 110, 101, 011 to 111.
If we include the errors which occur to order p2, we would not
be able to correct them.
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Independent error model
We can identify the following elements in this error correction
operations:

• the noise model

• an encoding

• an error correction operation

Sometimes the encoding is thought as copying the information:
if this would be essential it would be impossible in the quantum
world because of the no-cloning theorem.
The error correction operation could be thought as measuring
the bits and taking majority, this again would not be helpful if it
would be essential as it would destroy the quantum information.



Quantum Error Correction
Error models
Generic 1 qubit error
A generic qubit has the state

|Ψ〉 = α|0〉 + β|1〉
but qubits might not be isolated (and now we know that
there can be information hidden in quantum correlation
between systems) so the most general evolution which
include an environment (with state |ε〉) takes the form

|0〉|ε〉 → |0〉|ε0
0〉 + |1〉|ε1

0〉
|1〉|ε〉 → |0〉|ε0

1〉 + |1〉|ε1
1〉

Quantum Error Correction

and thus

(α|0〉+ β|1〉)|ε〉 →
(α|0〉 + β|1〉)

1

2
(|ε0

0〉 + |ε1
1〉) (⇒ 1l|Ψ〉)

+(α|0〉 − β|1〉)
1

2
(|ε0

0〉 − |ε1
1〉) (⇒ Z|Ψ〉)

+(α|1〉 + β|0〉)
1

2
(|ε1

0〉 + |ε0
1〉) (⇒ X|Ψ〉)

+(α|1〉 − β|0〉)
1

2
(|ε1

0〉 − |ε0
1〉) (⇒ iY|Ψ〉)

The effect of the noise is to apply the error operators
1l, X , Y , Z to the state |Ψ〉 depending on what the state
of the environment is.

Quantum Error Correction

Note that these four operator form an operator basis in
the acting on the 2 dimensional Hilbert space of one
qubit. For n qubits we have 4n possible operators, ob-
tained by the tensor product of each one-qubit operator,
i.e.. for two qubits we would have 1l⊗1l, X ⊗1l, . . . , X ⊗
X, . . . Z ⊗ Z.

Quantum Error Correction

Phase shift or phase flip
Let’s look at some simple examples of noise operators in
physical systems such as decoherence:

|0〉|ε〉 → |0〉|ε0〉 = |0〉|ε〉
|1〉|ε〉 → |1〉|ε1〉 = eiθ|1〉|ε〉

Thus

(α|0〉 + β|1〉)|ε〉 → (α|0〉 + eiθβ|1〉)|ε〉



and which can be rewritten as

(α|0〉 + eiθβ|1〉)|ε〉 =
1 + eiθ

2
(α|0〉 + β|1〉)|ε〉

+
1 − eiθ

2
(α|0〉 − β|1〉)|ε〉

=
1 + eiθ

2
1l(α|0〉 + β|1〉)|ε〉

+
1 − eiθ

2
Z(α|0〉 + β|1〉)|ε〉

Here we have a certain amplitude (1+eiθ

2
) of nothing hap-

pening (1l) and (1+eiθ

2
) of a Z error happening.
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Quantum Error Correction

Krauss operators
Let’s suppose that a system and its environment start in
a separable state and for simplicity that they are both in
pure states (|Ψ〉 = |Ψs〉 ⊗ |Ψe〉).

ρs = TreU |Ψe〉 ⊗ |Ψs〉〈Ψs| ⊗〈 Ψe|U †

=
∑

i

〈Ψi
e|U |Ψe〉︸ ︷︷ ︸ ⊗|Ψs〉〈Ψs| ⊗〈 Ψe|U †|Ψi

e〉︸ ︷︷ ︸

Ei E†
i

The set of operators {Ei} are called Krauss operators.
They are not unique, as we can use another basis for
the trace over the environment, but up to this freedom
they are uniquely defined. The unitarity of the whole

system-environment implies that
∑

i

E†
i AEi = 1l

The {Ei} described the non-unitary evolution (when we
look only at the first system and the initial state factor-
izes) and describe the noise influencing the device which
we want to use for quantum information processing.
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Quantum Error Correcting Codes

An error correcting code is a triple (C, E, R)such that
E(C, E, R) = 0. This implies that, on the code C,

RrEa = λra1l.

An equivalent definition for a quantum error correcting
code in term of properties of a basis state (|iL〉) of the
code C

〈iL|E†
aEb|jL〉 = δijcab

• If i #= j → basis states are mapped to orthogonal
states
• If i = j → that coherence is preserved (relative length
of the basis vectors).
Note if {Ea} is a correctable set of errors, any other set
obtained from a linear combination of the these errors
also form a correctable set.



The 3-qubit phase error QEC code

Let’s look at slightly more complex quantum error cor-
rection code, we mention before the model of decoher-
ence. Lets assume that the error are independent from
one bit to another. For one qubit the error model is
{√

1 − p1l,
√

pZ}. For 3 qubits we get the quantum op-
eration defined by the Krauss operators

{Ea} = {(1 − p)3/21l,

(1 − p)
√

pZ1, (1 − p)
√

pZ2, (1 − p)
√

pZ3,

p
√

1 − pZ1Z2, p
√

1 − pZ2Z3, p
√

1 − pZ1Z3,

p3/2Z1Z2Z3}.

Unfortunately we cannot find a code which protects for
all these errors but if p << 1, the dominant error term is
the one error term Zi term and we can neglect the other
ones (as p2 << p).
To protect for at most one Z error, we can get use the
encoding from the following quantum circuit

|0>

|0>

H

H

H

Encoding

|0> + |1>! "
00 → 00
01 → 01
10 → 11
11 → 10

={
Control-Not

| =
1√
2
(|0〉  +

  - |1〉)

Hadamard

  +
  -〉

which transform the state into

(α|0〉 + β|1〉)|0〉|0〉 → (α|0〉|0〉 + β|1〉|1〉)|0〉
→ (α|0〉|0〉|0〉 + β|1〉|1〉|1〉)
→ (α|+〉|+〉|+〉 + β|−〉|−〉|−〉).

2

{Ea} ≈ {(1 − 3p/2)1l,

√
pZ1,

√
pZ2,

√
pZ3, + higher order in p

and remember that

ρf =
∑

a

Ea|Ψ〉〈Ψ|E†
a

And thus the state becomes for each operator

(α |+〉|+〉|+〉 + β|−〉|−〉|−〉) →
(α|+〉|+〉|+〉 + β|−〉|−〉|−〉)with prob. (1-3p/2)
(α|−〉|+〉|+〉 + β|+〉|−〉|−〉)with prob. p
(α|+〉|−〉|+〉 + β|−〉|+〉|−〉)with prob. p
(α|+〉|+〉|−〉 + β|−〉|−〉|+〉)with prob. p

Note: the initial state and its corrupted version are or-
thogonal and have kept relative coherence

3

After this circuit we get the states

(α|0〉 + β|1〉)|0〉|0〉)with prob. (1-3p/2)
(α|1〉 + β|0〉)|1〉|1〉)with prob. p
(α|0〉 + β|1〉)|1〉|0〉with prob. p
(α|0〉 + β|1〉)|0〉|1〉with prob. p

The last two qubits identify which error has occurred. It
is called the syndrome.

!"#

!"#

$

$

$

$

$

$

%&'()&*&+'&,+'(-.+/ %&'(-.+/

!"#01 !2#! "
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To get the original state on the first qubit we just need
to flip the first bit if and only if the two ancilla bits are
in the state |1〉 (that is called a Toffoli gate) and get

(α|0〉 + β|1〉)|0〉|0〉)with prob. (1-3p/2)
(α|0〉 + β|1〉)|1〉|1〉)with prob. p
(α|0〉 + β|1〉)|1〉|0〉with prob. p
(α|0〉 + β|1〉)|0〉|1〉with prob. p

Thus the whole circuit is given by:

|0>

|0>

Y90

Y90

Y90

Y-90

Y-90

Y-90

DecoherenceEncoding Decoding Error
Correction

Toffoli gate

|0> + |1>! " |0> + |1>! "

5

Noiseless subsystems
Knill, R L, and Viola. PRL, 84:25252528, 2000

If the noise operators have a symmetry it might possible to find
a set of observable that commutes with it, that defines noiseless
subsystems with which we could process quantum information

[Oi, Ea] = 0

e.g. if noise is described by the operators {1l, Z1Z2},
then a qubit of information can be defined through the operators

1lE = 1l11l2, XE = Z1, YE = −Y1X2, ZE = X1X2.

In the above case the, the eigenstates of the operators define the
subspace |01〉 ±| 10〉 and it is called decoherence free subspace.

Zanardi, Rasetti, PRL 79, 3306, 1997

Duan, Guo, PRL79, 1953, 1997

Lidar, Chuang, Whaley, PRL 81, 2594, 1998

Fault tolerant QEC

We have seen how we can take quantum information
and encoded it in a new state so that is more robust
against corruption. This is a big step towards having
robust quantum information processing. But there some
of the questions remaining:

•How do we find codes?

•How do we protect information during information pro-
cessing?

•How do we encode so that a given algorithm with “N”
gates is performed robustly?

• . . .

Encoded operations and error propagation
Everything we have done now has assumed that we wanted
to keep a state intact, but in quantum computation we need
to manipulate states, i.e we need to make transformation

α|0L〉 + β|1L〉 → α′|0L〉 + β′|1L〉
α| + ++〉 + β| − −−〉 → α′| + ++〉 + β′| − −−〉

We could decode, then do an operation on the qubit and
reencode, but this would leave the qubit unprotected from
noise. So we need to do gates in such a way that they remain
protected.
A crucial element for understanding how to implement gates
in a fault tolerant way on encoded states is to see how errors
propagates through a circuit. In particular there are gates
organized in such a way that one error will propagate to more
than one error. These are bad as, if we use 1 error correcting
codes, these gates will destroy the advantage of error correc-
tion.
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A useful set of operations are the normalizer operations. They
are operation which preserve the Pauli operators.
Example are given by The Pauli matrices themselves:

X → ZXZ = −X

but these one either give you the same operator or minus this
operator. More interesting is the Hadamard gate

H = H† =

(
1 1
1 −1

)
(1)

X → HXH = Z and Z → HZH = X

Even more interesting are the controlled-gate is also in the
normalizer

X1l → CNOT X1l CNOT = XX
Z1l → CNOT Z1l CNOT = Z1l
1lX → CNOT 1lX CNOT = 1lX
1lZ → CNOT 1lZ CNOT = ZZ

3

The normalizer can be generated by by the gates

Hadamard:H =
1

√
2

(
1 1
1 −1

)

Phase gate:P =

(
1 0
0 i

)
and

CNOT =





1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0





4

Transversal gates
Bad error:

Z
{
{

Z

Z

Good Error:

Z

{
{

Z

Z

This latter gate is called transversal, i.e. one qubit of an
encoded quite affect acts on at most one qubit of another
encoded qubit. Stabilizer operations can be implemented
through transversal gates.

5

Fault tolerant QEC
Other gates
The normalizer gates are not a universal set of gates when they
act on the Pauli matrices. So we need to be able to make other
gates. Adding the preparation of the magic state

ρ =
1

2
(1l +

1
√

3
(X + Y + Z))

is sufficient to make a universal set of gates. To insure that we are
fault tolerant we should show that we can reliably check that we got
the magic state or find a way to reduce decrease its imperfection
appropriately.

Bloch

sphere

0 1

2



Error correcting codes and fault tolerant operations
The elements of the previous page show that we can
we can protect and manipulate information in fault tol-
erant way: i.e. that if the bare error rate is ε, the error
rate after the information has been encoded becomes cε2

(where we have assumed that a one error correcting code
has been used.
Thus we can increase the number of operation we do
reliably from 1/ε to 1/cε2.
The next question is how to increase this number of op-
erations so we can do an algorithm with a larger number
of gates?

2

The idea is to increase the number of error which can
be corrected. This can be done in different ways: either
by looking at better codes or another possibility is to
use concatenation. This idea of the latter methods is
to reencode encoded qubits in a hierarchical way. The
advantage of this method is that it is possible to arrange
the gates so that the error model is the same at all level
of the hierarchy.

h=1 h=2

ε ε ε2 4
C C

3

Error

probability

3

Accuracy threshold theorem:
In presence of noise, a quantum computation can be as long as re-
quired with any desired accuracy using only a polynomial increase
of resources as long as the noise level is below a threshold value:

Perror < Pthreshold

The threshold can be estimated calculated to be around 10−2 with
the following assumptions:

• Operations can be done in parallel

• Errors are independent from one qubit to qubit

• Any two qubits can interact in one operation

• There are no lost of qubits

• Classical computing comes for free

• There is a supply of fresh qubits on demand at no cost

Proofs bring the threshold to 10−3,−4

4

Threshold theorem

Knill et al.; Science, 279, 342, 1998

Kitaev, Russ. Math Survey 1997

Aharonov & Ben Or,  ACM press

Preskill, PRSL, 454, 257, 1998

A quantum computation 

can be as long as required 
with any desired accuracy 
as long as the noise level 
is below a threshold value

 P < 10
-6,-5,-4,...,-1?

Significance:
-imperfections and imprecisions are not
 fundamental objections to quantum computation

-its requirements are a guide for experimentalists 
-it is a benchmark to compare different technologies

-it gives criteria for scalability

16

Accuracy threshold theorem



Ingredients for FTQEC

! Parallel operations

! Good quantum control

! Ability to extract entropy

! Knowledge of the noise
• No lost of qubits
• Independent or quasi independent errors
• Depolarising model
• Memory and gate errors
• . . .

Ingredients for FTQEC
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Ingredients for FTQEC

! Parallel operations

! Good quantum control

! Ability to extract entropy

! Knowledge of the noise
• No lost of qubits
• Independent or quasi independent errors
• Depolarising model
• Memory and gate errors
• . . .

Ingredients for FTQEC



3 qubit code for phase errors

|0>

|0>

Y90

Y90

Y90

Y-90

Y-90

Y-90

DecoherenceEncoding Decoding Error
Correction

Toffoli gate

    

 

00
11
01
10

{={

Errors: +
+

Control-Not

α|0〉 + β|1〉

α| + ++〉 + β|−−−〉
α|− ++〉 + β| +−−〉
α| +−+〉 + β|− +−〉
α| + +−〉 + β|−− +〉 (α|0〉 + β|1〉)|00〉

(α|1〉 + β|0〉)|11〉
(α|0〉 + β|1〉)|01〉
(α|0〉 + β|1〉)|10〉

(α|0〉 + β|1〉)⊗
00 → 00
01 → 01
10 → 11
11 → 10

−
−

∼ 1− 3γ2

Version: January 17, 2001; Typeset on June 12, 2002,14:58 2

α|0〉 + β|1〉 α|0〉 + β|1〉

|±〉 =
1

√
2
(|0〉 ±| 1〉)
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Phase QEC NMR circuit
NMR implementation of the decoding and error correction:

Toffoli gate:

and the full decoding and Toffoli, including some optimization

39
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Experimental results
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The demonstration of quantum error correction is in the shape of the green curve which
does not have the first order error,i.e. with no error correcting (red curve) the fidelity
goes as e−t/T2 ≈ 1 − t/T2 and if we have error correction as ≈ 1 − c(t/T2)2 + . . . The
green curve is much flatter than the red one.

Experimental Quantum Error Correction:
D. G. Cory, M. D. Price, W. Maas, E. Knill,
R. Laflamme, W. H. Zurek,T. F. Havel and
S. S. Somaroo, PRL 81, 2152, 1998

40
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The 3 qubit QEC: noise correlation
It is possible to use quantum error correction to learn about
properties of the noise, e.g. properties of correlations between
phase errors on different qubits.



2 rounds of the 3 qubit QEC
O. Moussa PhD Thesis April 2010

3 bit code in an ion trap

5 bit quantum error correcting code
Implementation of the 5 bit code with
the stabilizer Z2Y 3Y 4X5, Z1Y 2Y 3X4,
Y 2Z3Z4Z5 and X1Z2X3Z4, including de-
coding and error correction for a basis of 1
qubit errors [1].

DecodingEncoding
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Knill, Laflamme, Martinez, 
Negrevergne, PRL 404,308,2000

DFS in neutron interferometry
D.Cory, D. Pushin, private communication

|01〉 →
1

√
2
|01〉 + |10〉 → α|01〉 + β|10〉

or in “logical” terms:

|0L〉 →
1

√
2
|0L〉 + |1L〉 → α|0L〉 + β|1L〉

The dominant noise is a phase shift due to rotation in the vertical
axis, i.e. eiθZ



DFS in neutron interferometry
D.Cory, D. Pushin, private communication

In the 4-blade case we
have path 1 and path
2 canceling each other
phase gain/loss and this
is similar to 2 qubit sys-
tem subject to the noise
Z1Z2 which has a DFS
{|01L〉, |10L〉}.

Magic state distillation
In brief a quantum computer needs to:
Prepare a state, compute, measure

| | |

For imperfect devices, we need to use fault tolerance. For state
preparation and measurement, need only to repeat, but for the
computation it is more complicated. Simplify by using transver-
sal gates

|

|

!"

Magic state distillation
Other possibility is to use only generators of the Clifford group,
with state preparation and measuremen in the computational
basis:

| ||

and include the preparation of

|π/8〉, or ρ =
1

2

(
1l +

1
√

3
(X + Y + Z)

)

Bloch

sphere

0 1

2

!"

Magic state distillation
Kitaev and Bravyi Phys. Rev. A 71 (2005) 022316

If ρ has imperfection such as

ρ
′
=

1

2
1l +

p′
√

3
(X + Y + Z)

we can use the decoding of 5 bit code to purify the state

i.e., if p′ is near enough 1, p′′ > p′

!!



Magic state distillation
Use crotonic acid

M H1 H2 C1 C2 C3 C4
M

-1309

H1
6.9 -4864

H2
-1.7 15.5 -4086

C1
127.5 3.8 6.2 -2990

C2
-7.1 156.0 -0.7 41.6 -25488

C3
6.6 -1.8 162.9 1.6 69.7 -21586

C4
-0.9 6.5 3.3 7.1 1.4 72.4 -

29398
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Prepare the state |0〉〈0|H1 ⊗ZH2 ⊗ |00000〉〈00000|MC1C2C3C4

Distill and get (for the 5 qubits)

θ1ρ1|00000〉〈00000| + θ2ρ2|00001〉〈00001| + . . .
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A.Souza, J. Zhnag, C. Ryan & R.L. in preparation

Algorithmic cooling with heat bath
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Algorithmic cooling with a heat bath

Schulman and Vazirani.!
Proceedings of the 31th 
Annual ACM Symposium!
on the Theory of Computation 
(STOC), pages 322–329, 
1998.!
!

Schulman, Mor and Weinstein, 
PRL94, 2005

Algorithmic cooling with heat bath

12C 13C NaDH 0

Malonic acid
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Algorithmic cooling
Sorensen [5], Schulman and Vazirani [4]

We have seen that we can cool a subset of spins by swapping states. For
excample, with 3 spins, implementing a gate that swaps |011〉 ↔ |100〉 will
increase the order of the first spin at the expense of the last two. We could
concatenate this process to reach polarization of order 1.

ρ ∼ e−βH ∼
1

2n
(1l − βω(Z1 + Z2 + Z3) + . . . )

ρd
thermal ≈

βω

8





3 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 −1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 −1 0 0
0 0 0 0 0 0 −1 0
0 0 0 0 0 0 0 −3





⇐⇒ ρd
pol ≈

βω

8





3 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 −1 0 0 0
0 0 0 0 0 −1 0 0
0 0 0 0 0 0 −1 0
0 0 0 0 0 0 0 −3





ρ̄d
pol = Tr2,3ρ

d
pol ≈

3

4
βω

(
1 0
0 −1

)

We could concatenate this process to reach polarization of O(1),
but this would take a lot of ressources (∼ 1/β2).
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Multiple Rounds of Algorithmic Cooling

Refresh Thermal Contact Register Operation
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1.69X Boost
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Polarization Boost
w.r.t. heat-bath

• By using heat-bath able to surpass 
Shannon/Soresnsen bound of 1.5X 
heat-bath polarization

J. Baugh, O. Moussa, C. Ryan, A. Nayak, and !
R. Laflamme.  Nature, 438:470, 2005.

C.Ryan et al.  A spin based heat engine: multiple   
rounds of algorithmic cooling;   Ryan et al. PRL 100, 
140501, 2008
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Lecture 1. Quantum Error Correction

Lecture 2. Experimental Quantum Error Correction

Lecture 3. Characterising noise and benchmarking

Plan of Lecture 3

1. Characterising noise

2. Benchmarking gates

Characterising noise in q. systems
Process tomography:

ρf =
∑

k

AkρiA
†
k =

∑

kl

χklPkρiPl

For one quibt, 12 parameters are required as described by the
evolution of the Bloch sphere:

For n qubits, we need to provide 42n − 4n numbers to do so.



Coarse graining
• We are not interested
in all the elements that
describe the full noise
superopeartor but only a
coarse graining of them.

• If we are interested in
implementing quantum er-
ror corrrection, we can ask
what is the probability to
get one, or two, or k qubit
error, independent of the
location and independent
of the type of error σx,y,z.
The question is can we do
this efficiently?

• Coarse graining is equiv-
alent to implement a sym-
metry.

Emerson, Silva, Moussa, Ryan, Laforest,
Baugh, Cory, Laflamme, Science 317, 1893,
2007

Coarse graining
1) to coarse error type average over SU(2)⊗n

ρf =
∑

k

∫
dµ(U)U †AkUρiU

†A†
kU

This is an example of a 2-design, and the integral can
be replaced by a sum

ρf =
∑

k

∑

α

C†
αAkCαρiC

†
αA†

kCα

where Cα belongs to the Clifford group ∼ SP with
P = {1l, X, Y, Z}, S = {e−iπ

4X, e−iπ
4Y , e−iπ

4Z}

2) coarse grain the position by symmetrising using
permutation πs

8

Coarse graining

ρm σout
m,i,s

(n)
πs Ci Λ C†

i π†
s

Λi

Λi,s

If we implement all the elements in the Clifford group
and permutation, we would have an exponential num-
ber of terms , but the sum can be estimated by sam-
pling and using the Chernoff bound.

(see Emerson et al. arXiv:0707.0685 )

In practice, implementing the symmetrisation can be
done by starting with the state |000 . . . 〉 and mea-
sure the Hamming size (i.e. the number of 1) in the
final state.
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2 qubit example
• Let assume we have noise with Kraus operators of the form:

Ak = exp[i
π

4
(Z1 + Z2)]

= {
1

2
(1l ⊗ 1l + Z ⊗ 1l + 1l ⊗ Z + ZZ}

ρf =
∑

k

AKρiA
†
k =

∑

kl

χklPkρiPl



2 qubit example
ρf =

∑

k

AKρiA
†
k =

∑

kl

χklPkρiPl

ρ̄f =
∑

kl

∑

α

χklC
†
αPkCαρiC

†
αP †

l Cα

• Summing over the Pauli group gets rid of off-diagonal of χkl, i.e.
1l1l1lρi1lZ1l + X1lXρiXZX + Y 1lY ρiY ZY + Z1lZρiZZZ = 0

• Summing over the symplectic group equalize the appearance of
the operators X, Y and Z, e.g. S{X}S† = 1

3
{X, Y, Z}

• By inputting a state of the for |00〉, measuring in the Z basis,
counting the number of time states with Hamming weight i ap-
pears (this becomes equivalent to summing over the permutation
group to homogeneise errors over all qubits), we can estimate pi

(noting that Z errors do not affect that state).

ρ̄f =
∑

j

pj

#j
P{j}|00〉〈00|P †

{j}

NMR implementation: 2 qubits
It is possible to adapt the pure state protocol to NMR, the idea is
to use a series of n initial states of the form

Z1l1l1l . . . ; ZZ1l1l . . . ; ZZZ1l . . . ; . . .

NMR implementation: 2 qubits

Twirling in liquid state NMR

The Implementation

Non-permutation and fake permutation are perform so that all experiment can be 

compared on the same footing. 

Twirling in liquid state NMR

The Implementation

Non-permutation and fake permutation are perform so that all experiment can be 

compared on the same footing. 

NMR implementation: 2 qubits



Experimental results
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Checking for noise independence
If the noise is independent

cω = (c1)
ω

Benchmarking gates Benchmarking gates



Benchmarking gates Benchmarking gates

Single qubit Gates

Benchmarking gates

Single qubit Comparison
Summary Table

System Error Rate Reference

Ion Trap (single) 0.00482
PRA 77 012307 

(2008)

Liquid-State 
NMR

0.00013
NJP 11 013034 

(2009)

Superconducting 0.011
PRL 102 090502 

(2009)

Ion Trap (crystal) 0.0008
arXiv:0906.0398 

(2009)

ESR 0.0007
PRL 95 200501 

(2005)

Neutral Atoms 0.01
arXiv:0811.3634 

(2008)

Benchmarking gates

Multi-qubit Gates
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Benchmarking gates

Multi-qubit Comparison
Summary Table

System Error/Fidelty Reference

liquid-state NMR 0.0047 NJP 11 013034 
(2009)

ion-trap (single) 99.3% Nat. Phys. 4 463 
(2008)

superconducting 91% Nature 460 240 
(2009)

NV centre 89% Science 320 1326 
(2008)

Linear Optics 90% PRL 93 080502
(2004)

Neutral Atoms 73% arXiv:0907.5552 
(2009)

ESR 95% Nature 455 1085 
(2008)

Conclusion

• Control methods are necessary for building robust quantum
information processors; quantum error correction is one of them
and it is scalable in theory

• Ideas and concepts of quantum error correction are being im-
plemented today in the laboratory in a variety of technologies,
testing the assumptions of fault tolerant quantum computation

• In order to implement quantum error correction as we go to-
wards larger quantum processor we will need to characterise the
noise and methods to do that are being developed

Thanks
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