The Force of Fluctuations Measurement of Critical Casimir Forces -

Clemens Bechinger

2. Physikalisches Institut, Universität Stuttgart, Germany

Confinement Induced Forces →2R ←

particles (z < 2R)

entropic & depletion forces
osmotic pressure

Confinement Induced Forces

binary liquid @ critical point critical Casimir force
 - z >> 2R
 - strong temperature dependence

Confinement Induced Forces

Outline

- Brief reminder to QED-Casimir forces
 - QED fluctuations in confined geometries
- The critical Casimir effect in binary mixtures
 - *Concentration fluctuations in binary mixtures*
- **Total internal reflection microscopy (TIRM)** *Measuring forces with femto Newton resolution*
- Experimental results
 - *temperature dependence of critical Casimir forces influence of boundary conditions*
- Lateral critical Casimir forces chemically patterned surfaces
- Conclusions & future perspectives

The QED Casimir Effect

Hendrik Casimir

reduced spectrum of quantum mechanical vacuum fluctuations

H. B. G. Casimir, Proc. Kon. Nederl. Akad. Wet. B51, 793 (1948)

Experimental Observations

• <u>Mechanical Balance</u>

Sparnaay, Physica 24, 751 (1958)

•AFM

Mohideen and Roy, PRL 81, 4549-4552 (1998)

• <u>Actuation of MEMS</u>

Chan, Aksyuk, Kleiman, Bishop, Capasso, Science **291,** 1941 (2001)

Failure Mechanisms in MEMS

Example: parallel plates of 1mm² size at 10nm distance: ~ 0.1 N Casimir forces \implies STICTION

Sandia National Laboratory

repulsive Casimir forces in vacuum:

 $\mu > \varepsilon$ Kenneth et al. PRL **89**, 33001 (2002) meta-materials Leonhardt, Philbin, New J. Phys. **9**, 254 (2007)

The Critical Casimir Effect

"Phenomena at the walls in a critical binary mixture"

M. E. Fisher and P. G. deGennes, C. R. Acad. Sci. Paris B287, 209 (1978)

Ζ

Two plates immersed in binary mixture close to the critical point

Critical Casimir force

universal scaling function

Scaling Function & Boundary Cond.

$$F(z,T) = A \frac{k_{\rm B} T_{\rm c}}{z^3} \vartheta(z/\xi)$$

boundary conditions set by adsorption preference of confining surfaces

Vasilyev, Gambassi, Maciolek, Dietrich EPL 80, 60009 (2007)

attractive and repulsive critical Casimir forces

Casimir: QED vs. Critical

	QED	Critical	
fluctuating quantity	e.m. field	local conc.	
excitation	quanta	classical	
control of fluctuation-range	NA	$\boldsymbol{\xi} = \boldsymbol{\xi}_0 \left \frac{T}{T_c} - 1 \right ^{-\nu}$	(diverging @ T _c)
sign of force	attractive	attr./ <mark>repuls</mark> .	(boundary cond.)

Critical Casimir Force in ⁴He Films

Critical fluctuations induce thinning of ⁴He films close to T_{λ} = 2.1768 K

Garcia, Chan, PRL **83,** 1187 (1999) Ganhin, Scheidemantel, Garcia, Chan, PRL **97**, 075301 (2006)

Binary Critical Mixtures

water - lutidine

36°C

35°C

34°C

T < 33°C opalescence

critical

How to Measure Tiny Forces

How to resolve pico ... femto Newton

Surface Force Apparatus (SFA)

J.N. Israelachvili, Intermolecular and surface forces, Academic Press (1991).

Atomic Force Microscopy (AFM)

Ducker, Senden, Pashley, Nature, **353**, 239 (1991). Milling, Vincent, J. Chem. Soc., Farady Trans. **93**, 3179 (1997).

resolution limited by spring constant $D \ge 0.01$ N/m freely' suspended colloidal probe particle

• Total Internal Reflection Microscopy (TIRM)

Prieve, Walz, Current opinion in colloidal interfaces & science **2**, 600 (1997). Volpe, Brettschneider, Bechinger, Opt. Express (in press).

How to determine I(z) ?

complicated scattering problem $\beta^{-1} < a$

- small penetration depth
- p-polarized illumination
- dielectric surfaces

Prieve, Walz, Appl. Opt. **32**, 1629(1993)

Liu, Kaiser, Lange, Schweiger, Optics Comm. **117**, 521 (1995)

Helden, Eremina, Riefler, Hertlein, Bechinger, Eremin, Wriedt, Appl. Opt. 45, 7299 (2006)

- non-homog. liquids (concentration profiles)
- highly reflecting surfaces

I(z) = ?

How to measure I(z)

Volpe, Helden, Brettschneider, Wehr, Bechinger, *PRL* **104**, **170602 (2010)**. Brettschneider, Volpe, Helden, Wehr, Bechinger. *Phys. Rev. E* 83, 041113 (2011).

Example: TIRM on Au Surfaces

Volpe, Brettschneider, Helden, Bechinger, Opt. Express 17, 23975 (2009).

Experimental Setup

Sensitivity of TIRM

resolution > 5 fN !

Rudhardt, Bechinger, Leiderer, J. Phys: Cond. Matt. 11, 10073 (1999)

++: particle & wall: preferential adsorption of lutidine

PS 3.7µm (x-linked, weakly charged) HMDS treated silica wall (hydrophobic)

z [μm]

 $\Phi(z) = A \exp(-\kappa z)$ $\kappa^{-1} \approx 15 \text{nm}$

W

3

0.4

0.2

0.1

demixed

mixed

 $0.5 \quad 0.6$

50-

45-

40-

35 -

Hertlein, Helden, Gambassi, Dietrich & Bechinger Nature **451**, 172 (2008)

++: particle & wall: preferential adsorption of lutidine

Hertlein, Helden, Gambassi, Dietrich & Bechinger Nature 451, 172 (2008)

++: particle & wall: preferential adsorption of lutidine

Hertlein, Helden, Gambassi, Dietrich & Bechinger Nature **451**, 172 (2008)

++: particle & wall: preferential adsorption of lutidine

Hertlein, Helden, Gambassi, Dietrich & Bechinger Nature 451, 172 (2008)

++: particle & wall: preferential adsorption of lutidine

Hertlein, Helden, Gambassi, Dietrich & Bechinger Nature **451**, 172 (2008)

++: particle & wall: preferential adsorption of lutidine

Hertlein, Helden, Gambassi, Dietrich & Bechinger Nature **451**, 172 (2008)

++: particle & wall: preferential adsorption of lutidine

PS 3.7µm (x-linked, weakly charged) HMDS treated silica wall (hydrophobic)

similar results for

 $0.25 < c_{L} < 0.32$

Hertlein, Helden, Gambassi, Dietrich & Bechinger Nature **451**, 172 (2008)

- -: particle & wall: preferential adsorption of water

sulfate-terminated PS 2.4µm (10.1µC/cm²) hydrophilic silica wall

Gallagher et al. Phys. Rev. A 46, 7750 (1992)

- -: particle & wall: preferential adsorption of water

sulfate-terminated PS 2.4µm (10.1µC/cm²) hydrophilic silica wall

Gallagher et al. Phys. Rev. A 46, 7750 (1992)

Hertlein, Helden, Gambassi, Dietrich & Bechinger Nature 451, 172 (2008)

Correlation Length

Gambassi, Maciolek, Hertlein, Nellen, Helden, Bechinger, Dietrich Phys. Rev. E 80, 061143 (2009).

SAXS - Measurements

Nellen, Helden, Dietrich, Chodankar, Nygard, v.d. Veen, Bechinger, Soft Matter 7, 5360 (2011)

asymmetric boundary conditions repulsive critical Casimir force

asymmetric boundary conditions repulsive critical Casimir force

Dependence on BCs

Gradient in BC

hydrophilic

hydrophobic

 $\frac{\Phi}{k_{\rm B}T} = \frac{R}{z} \mathscr{G}\left(\frac{z}{\xi}\right)$

14

hydrophilic particle $T-T_C = 0.22K$

Continuous variation of critical Casimir forces by BC

Off-Critical Composition: ++

reduction of surface energy by **BRIDGE FORMATION**

No bridge formation for $c_L > c_C$ \checkmark

Critical Casimir Forces between colloidal particles

Substrate: hydrophilic **Particles:** 2.4 µm hydrophobic (lutidine)

Temperature dependent pair potential

Lateral Critical Casimir Forces

1. Chemical Step

Lateral Critical Casimir Forces 2. Periodic Lines

(x 8)

Soyka, Zvyagolskaya, Hertlein, Helden, Bechinger, PRL **101**, 208301 (2008).

Critical Casimir Traps

Soyka, Zvyagolskaya, Hertlein, Helden, Bechinger, PRL 101, 208301 (2008).

3. Squares

32.39 °C

32.48 °C

Soyka, Zvyagolskaya, Hertlein, Helden, Bechinger, PRL 101, 208301 (2008).

Demixing of binary systems

 $\Delta T = 1 K$

0.08 K

 $\rho\sigma^2 = 0.65$

0.02 K

Andrew Archer Loughborough, UK

0.01 K

DFT calculations

- HS - attr./rep. crit. Casimir

critical point in solvent \rightarrow critical point in colloidal mixture

Zvyagolskaya, Archer, Bechinger (submitted)

Particles with non-uniform BC

Summary

Confinement of binary liquids close to critical point lead to critical Casimir forces

- strong temperature-dependence
- dependence on boundary conditions (single ML determines BC)
- influence of salt on critical Casimir forces

versatile interaction mechanism for hard and soft matter systems

Outlook

- many body interactions, novel phases (photonic crystals)
- self-assembly/positional & orientational order
- directed bonds with patchy particles (dipolar liquids)
- dynamical aspects: critical slowing down
- anti-stiction coatings for MEMS by simple coating process

Acknowledgements

C. Hertlein, L. Helden, U. Nellen O. Zvyagolskaya, D. Vogt G. Volpe R. Dullens, J. Baumgartl J. Dietrich V. Blickle, J. Mehl J. Mikhael, T. Bohlein Y. Li, C. Scholz, F. Wirner S. Bleil, S. Schmitt M. Zvyagolskaya M. Meister, L. Zaidouni I. Buttinoni

Statistical Physics

- Klaus Mecke (Erlangen)
- D. Marr (Golden, CO)
- H. Stark (TU Berlin)
- S. Dietrich (MPI Stuttgart)
- A. Gambassi (Trieste)
- U. Seifert (Uni Stuttgart)
- J. Roth (ITAP Stuttgart)

Material Science

Applied Science

