

Schweizerische Eidgenossenschaft Confédération suisse Confederazione Svizzera Confederaziun svizra

Red Brook Provision

Federal Department of Justice and Police FDJP **Federal Office of Metrology METAS**

The quantised Hall resistance as a resistance standard Blaise Jeanneret

The quantised Hall resistance (QHR) as a resistance ME And The Apple 10 Your ADD FIND Reset Structure CONG The Extendio CONG The CONG THE CONGREGATE POWER ASSEMBLY PRESS TO A Reset STRE ASSEMBLY PRESS THE CONGREGATE POWER *standard*

B. Jeanneret

Federal Office of Metrology (METAS)

Outline

- . Introduction
- Physical properties of the QHR
- Cryogenic Current Comparator
- Universality of the QHR
- QHR and the SI
- Applications
- AC-QHE
- Conclusions

1 ppb = 1 part in 10^9

Introduction $R_K = h/e^2 = 25 812.807...$ Ω 7 VH 2DEG 14 $i = 2$ \overline{B} 6 12 5 10 $T < 1K$ $R_{\rm H}$ (kg) $R_{_{\mathrm{M}}}$ (KQ) Vxx 3 $\overline{4}$ 8 $\overline{3}$ 4 6 $\overline{2}$ $\overline{\mathcal{L}}$ \overline{c} 0 0 $\overline{2}$ $\overline{4}$ 8 10 12 6 0 $B(T)$

- Ideal systems: $T = 0$ K, $I = 0$ A
- No dissipation: $R_{xx} = 0$

 R_{H} (*i*) = h /*ie*²

 $R_H(i)$ is a universal quantity Localization theory,

Edge state model

- Real experiment: $T > 0.3$ K, I = 40 µA Non-ideal samples
- Dissipation: $R_{xx} > 0$

$$
R_H(i, R_{xx} \rightarrow 0) = h/ie^2
$$
 ??

Is $R_H(i)$ a universal quantity? Independent of device material, mobility, carrier density, plateau index, contact properties.....?

Few quantitative theoretical models available

- \rightarrow empirical approach,
- \rightarrow precision measurements

Temperature dependence

• Thermal activation: $1 K \le T \le 10 K$ electrons thermally activated to the nearest extended states

$$
\sigma_{xx}(T) = \sigma_{xx}^{0} \cdot e^{-\frac{1}{2}kT}
$$

$$
\Delta = E_F - E_{LL}
$$

$$
\delta\sigma_{xy}(T) = \sigma_{xy}(T) - \frac{ie^2}{h}
$$

$$
\boxed{\delta \rho_{xy}(T) = s \rho_{xx}(T)}
$$

• Cage et al. 1984: 1.2 K < T < 4.2 K, 2 GaAs samples, *i* = 4, *I* = 25 µA $-0.01 < s < -0.51$

Current dependence

The cryogenic current comparator (CCC): Principles

Harvey 1972

The CCC bridge:

SQUID:

$$
N_P \cdot I_P = N_S \cdot I_S \cdot (1 + d)
$$

with
$$
d = \frac{N_t}{N_S} \cdot \frac{R_L}{R_L + R_H}
$$

Detector:

$$
U_m = R_S \cdot I_S - R_P \cdot I_P
$$

$$
\frac{R_P}{R_S} = \frac{N_P}{N_S} \cdot \frac{1}{1+d} \cdot \frac{1}{1+U_m}
$$

Ratio accuracy:

Windings in a binary series:

1, 1, 2, 4, 8, 10, 16, 32, 32, 64, 100, 128, 256, 512, 1000, 1097, 2065, 4130

Ratio accuracy

Performances:

For a typical comparison: $R_p = R_H(2)$ $N_p = 2065$ R_S = 100 Ω *N_S* = 16 $I_p = 50 \mu A$

Noise: 7 nV / Hz1/2 U^A = 2 nΩ / Ω in 2 min

Universality of the quantum Hall effect

- Width dependence
- Contact resistance
- Device material: MOSFET, GaAs and **GRAPHENE**
- Device mobility
- Plateau index

Width dependence

Theoretical model:

$$
\frac{\Delta R_H(i)}{R_H(i)} = \alpha \left(\frac{l}{w}\right)^2
$$

$$
\Delta R_H(i) = R_H(i, w) - R_H(i, w = \infty)
$$

$$
l = \sqrt{\hbar / eB}
$$
 magnetic length

• No theoretical prediction for α

- A. H. MacDonald, P. Streda, 1984
- B. Shapiro, 1986
- W. Brenig and K. Wysokinski, 1986
- R. Johnston and L. Schweitzer, 1988.

Experiment

Samples: $\mu = 42$ T⁻¹ $n = 4.8 \times 10^{15}$ m⁻²

Measurement procedure:

- Cooling rate: a couple of hours
- \bullet T = 0.3K
- *Vxx* measured before and after measurements
- Trypically *Rxx* < 100 µΩ
- R ^H measured on two contact pairs
- Reference sample: 1 mm wide

- No size effect observed within the measurement uncertainty
- Value of α :

$$
\alpha_2 = (-1.8 \pm 1.8) \times 10^{-3}
$$

$$
\alpha_4 = (0.7 \pm 5.0) \times 10^{-3}
$$

• Deviation on 500 µm wide samples:

- $i = 2 < 0.001$ ppb
- $i = 4 < 0.003$ ppb
- No influence

Effect of the contact resistance *R^c*

M. Büttiker, 1992: "...*It is likely, therefore, that in the future, contacts will play an essential role in assessing the accuracy of the QHE***."**

On a perfectly quantised plateau:

$$
R_c(P1) = V_{P1-P2} / I
$$

To induce a high value of *R^c* : 1) Apply a high voltage $(10 - 20V)$ at $B = 0$ 2) Cool the QHR to base T in 2-3 min

Infrared illumination:

- Pulses with a 900 nm diode *R^c*
- \cdot Cable resistance 8.5 Ω

MOSFET-GaAs

• Hartland et al., NPL, 1991:

Direct comparison of two QHR using a CCC

 $\frac{\Delta R_H(\text{MOSFET}-\text{GaAs})}{R} \leq 3.5 \times 10^{-10}$ $R_{\!\scriptscriptstyle H}$

- Kawaji, Yoshihiro (ETL), vanDegrift (NIST) 1992: Deviations in $R_H(4)$ up to 0.3 ppm despite the absence of dissipation. MOSFET with small critical current, low gate voltage
- Theoretical model by Heinonen et al.: Perfect quantization with dissipation (short range elastic scatterers located at the edges)

MOSFET measurements

Measurements

Jeckelmann et al., OFMET, 1996

$$
\frac{\Delta R_{H}(\text{MOSFET} - \text{GaAs})}{R_{H}} \le 2.3 \times 10^{-10}
$$

SONY MOSFET

Anomalous results can be

explained by:

- contact effects
- asymmetric longitudinal

voltages

•
$$
R_{xx} \approx 0 \longrightarrow \Delta R_H = 0
$$

2

© metas 28.07.11

Ulm, July 2011 / Jt

Graphene (courtesy JT Janssen NPL) metas

Tzalenchuk, TJBMJ et al. Nature Nanotechnology 5, 186 (2010)

Graphene (courtesy of JT Janssen NPL) metas

Mobility

fabrication process to 2 parts in 10-10

Step ratio measurements

•
$$
R_H
$$
 independent of the
plateau index to 3 parts in 10⁻¹⁰

$$
\frac{i \cdot R_H(i)}{2 \cdot R_H(2)} = 1 - (1.2 \pm 2.9) \times 10^{-10}
$$

 $i = 1, 3, 4, 6, 8$

Summary

The quantum Hall resitance is a universal quantity independent of:

- Device width
- Device material: MOSFET-GaAs, **Graphene**
- Device mobility
- Plateau index
-to a level of 3 parts in 10¹⁰

Negligible dissipation:

- Small measuring current $I \ll I_c = 0.6$ mA/mm
- Low temperature *T* < 1.2 K
- Good quality electrical contacts R_c < 10 Ω

$$
R_H(i, R_{xx} \rightarrow 0) = h/ie^2
$$

B. Jeckelmann and B. Jeanneret Rep. Prog. Phys. 64, 1603, 2001

CCEM Technical Guideline: F. Delahaye and B. Jeckelmann Metrologia 40, 217-223, (2003)

The SI unit: the Ampere

Définition:

L'ampère est l'intensité d'un courant constant qui, maintenu dans deux conducteurs parallèles, rectilignes, de longueur infinie, de section circulaire négligeable et placés à une distance de 1 mètre l'un de l'autre dans le vide, produirait entre ces conducteurs une force égale à 2 x 10–7 newton par mètre de longueur.

$$
\frac{F}{l} = \frac{\mu_0 I_1 I_2}{2 \pi d}
$$

\n
$$
\Rightarrow \mu_0 = 4 \pi \times 10^{-7} \text{ Vs/Am}
$$

$$
c^2 = \frac{1}{\varepsilon_0 \mu_0}
$$

$$
C, \varepsilon_0, \mu_0 \text{ are exact!!}
$$

The definition does not lead to a practical realisation of the Ampere!!!

The SI realisation of the Ohm: the calculable capacitor

Thompson-Lampard Theorem (1956):

$$
\boxed{\exp(-\frac{\pi C_1'}{\varepsilon_0}) + \exp(-\frac{\pi C_2'}{\varepsilon_0}) = 1}
$$

Cross-capacitance identical:

$$
C = \frac{\varepsilon_0 \ln(2)}{\pi} \approx 1.95 \,\mathrm{pFm}^{-1}
$$

CODATA 98: NPL88: $\Delta R_k / R_k = 5.4 \times 10^{-8}$ NIST97: $\Delta R_k / R_k = 2.4 \times 10^{-8}$ NML97: $\Delta R_k / R_k = 4.4 \times 10^{-8}$ NIM95: $\Delta R_k / R_k = 1.3 \times 10^{-7}$

A conventional value for R_k

SI Realization of R_K :

a few parts in $10⁸$ uncertainty

Reproducibility of *R^H*

a few parts in 10¹⁰ uncertainty

2 orders of magnitude!

Conventional value (exact): CCE 1-1-90

RK-90 = 25 812.807 Ω *KJ-90* = 483 597.9 GHz/V

Josephson effect: *K^J = 2e/h*

International QHR Key-comparison

Applications: DC Resistance Standard (data METAS)

• Deviation from fit < 2 n Ω/Ω over a period of 10 years

Applications: QHR Arrays

- On chip, large array of Hall bars (up to 100 devices)
- Series-parallel connection scheme: $R = R_K / 200$
- Accuracy of the quantization: 5 parts in 10⁹ ($T = 1.3$ K, $i = 2$)
- Behave like a single Hall bar
- Transportable resistors for international comparison
- Nominal value of 100 Ω can be fabricated

Applications: QHE array

Universality tests: quantum Hall Wheatstone bridge

$$
I_{ub}/I = V_{ub.}/V \approx \frac{1}{4} [(\alpha_1 + \alpha_3) - (\alpha_2 + \alpha_4)]
$$

 α_j (<<1): relative deviation of the jth resistor to $R_{\rm K}/2$

Relative deviation of one resistor among the others: $\Delta R/R = 4 \times (I_{\text{ub.}}/I) = 4 \times (V_{\text{ub.}}/V)$

• On-chip fully integrated QHE Wheatstone bridge

F. Schopfer et al, J. Appl. Phys. 102, 054903 (2007)

Universality tests: quantum Hall Wheatstone bridge

• QHE Wheatstone bridge with 4 GaAs/AlGaAs LEP 514 Hall bars

F. Schopfer et al, in: A.H. Cookson, T. Winter (Eds.), Proc. of the CPEM, Boulder, 2008, p. 22.

Current detection

- CCC equipped with a RF SQUID
- (3436 turns winding)
- \Rightarrow Current resolution: 400 fA/Hz^{1/2}
- Lock-in technique (0.15 Hz to 20 Hz)

• Extrapolation to zero dissipation state $(R_{xx}=0)$

$\Delta R/R = -1.9 \times 10^{-12} + (-3.18 \times 10^{-11})$

None of the four quantum Hall resistances departs from the others by more than 3 parts in 1011

Towards an uncertainty of some parts in 10¹²

Ulm, July 2011 / Jt

Applications: Capacitance calibration

- SI realisation of the Farad: Calculable capacitor
- Complicated experiment
- Representation of the Farad: DC QHE
- New route: AC measurements of the QHR

AC measurements of the QHE

- Narrow bumpy "plateau " (PTB, NPL, NRC, BIPM)
- Frequency dependence: $R_H(i, \omega) = \alpha \omega$ α = 1 -5 10⁻⁷/ kHz
- Measurements problem: AC Losses

AC-QHE: Phenomenological Model

Susceptibility: 2D Model (no gates, no screening electrodes, $d \ll L, d \ll w$

 \rightarrow Model fully explain the measurements (frequency dependence): *B. Jeanneret et al. 2006*

© metas 28.07.11

AC Losses

$$
Z_{\rm H} = \frac{V_{\rm H}}{i} = \frac{V_{\rm H}}{i_{\rm H} - i_{\rm I}} \approx R_{\rm H} \left(1 + \frac{R_{\rm H}}{V_{\rm H}} i_{\rm I} \right) = R_{\rm H} (1 + \Delta)
$$

Overney et al., 2003

Double-shielding technique (courtesy J. Schurr, PTB)

Meet the defining condition: ALL currents which have passed the Hall-potential line are collected and measured.

Adjust the high-shield potential *sU* so that $dR_H/dI = 0$.

B.P. Kibble, J. Schurr, *Metrologia* **45, L25-L27 (2008).**

© metas 28.07.11

Realization of the capacitance unit (courtesy J. Schurr, PTB)

- relative uncertainty of 10 pF: $4.7 \cdot 10^{-9}$ $(k = 1)$

(cryogenic quantum effect without 'calculable' artefacts)

- quantum standard of capacitance, analogous to R_{DC}

J. Schurr, V. Bürkel, B. P. Kibble, *Metrologia* **46, 619-628, 2009**

Conclusions

- *R^H* is a universal quantity
- QHR improved electrical calibration in National Metrology Institutes
- QHR allows a representations of the Farad
- QHR is a primary standard for impedances: AC-QHE
- Future development: **Graphene**