

Schweizerische Eidgenossenschaft Confédération suisse Confederazione Svizzera Confederaziun svizra

americal 4 . Same

Federal Department of Justice and Police FDJP Federal Office of Metrology METAS

The quantised Hall resistance as a resistance standard Blaise Jeanneret

The quantised Hall resistance (QHR) as a resistance standard

B. Jeanneret

Federal Office of Metrology (METAS)

Outline

- Introduction
- Physical properties of the QHR
- Cryogenic Current Comparator
- Universality of the QHR
- QHR and the SI
- Applications
- AC-QHE
- Conclusions

1 ppb = 1 part in 10^9

Introduction $R_{K} = h/e^{2} = 25 \ 812.807... \ \Omega$ Vн 2DEG *i* = 2 В T < 1 K $R_{\rm H}$ (k Ω) $R_{\rm xx}({\rm k}\Omega)$ V_{XX} B (T)

- Ideal systems: T = 0 K, I = 0 A
- No dissipation: $R_{xx} = 0$

 $R_H(i) = h/ie^2$

 $R_H(i)$ is a universal quantity Localization theory,

Edge state model

- Real experiment: T > 0.3 K, I = 40 μ A Non-ideal samples
- Dissipation: $R_{xx} > 0$

$$R_H(i, R_{xx} \rightarrow 0) = h/ie^2$$
??

Is *R_H*(*i*) a universal quantity? Independent of device material, mobility, carrier density, plateau index, contact properties....?

Few quantitative theoretical models available

- \rightarrow empirical approach,
- \rightarrow precision measurements

Temperature dependence

• Thermal activation: 1 K \leq T \leq 10 K electrons thermally activated to the nearest extended states

$$\sigma_{xx}(T) = \sigma_{xx}^{0} \cdot e^{-4/kT}$$
$$\Delta = E_{F} - E_{LL}$$

$$\delta\sigma_{xy}(T) = \sigma_{xy}(T) - \frac{ie^2}{h}$$

$$\delta \rho_{xy}(T) = s \, \rho_{xx}(T)$$

Cage et al. 1984:
1.2 K < T < 4.2 K,
2 GaAs samples, *i* = 4, *I* = 25 μA
-0.01 < s < -0.51

Current dependence

The cryogenic current comparator (CCC): Principles

Harvey 1972

The CCC bridge:

SQUID:

$$N_P \cdot I_P = N_S \cdot I_S \cdot (1+d)$$

with $d = \frac{N_t}{N_S} \cdot \frac{R_L}{R_L + R_H}$

Detector:

$$U_m = R_S \cdot I_S - R_P \cdot I_P$$

$$\frac{R_P}{R_S} = \frac{N_P}{N_S} \cdot \frac{1}{1+d} \cdot \frac{1}{1+\frac{U_m}{U}}$$

Ratio accuracy:

 $U_{SOUID} \propto (\delta w_1 - \delta w_2)$

Windings in a binary series:

1, 1, 2, 4, 8, 10, 16, 32, 32, 64, 100, 128, 256, 512, 1000, 1097, 2065, 4130

Ratio accuracy

Performances:

	rms-noise $\left[nV / \sqrt{0.25 \text{ Hz}} \right]$				
Ratio	Johnson	Detekt.	SQUID	Σ _{ideal}	Σ_{meas}
10 kΩ : 100 Ω	6.4	3.3	0.8	7.2	7.2
R_H(4) : 100 Ω	0.8	1.4	1.0	1.9	2.5
1 00 Ω : 1 Ω	0.6	0.4	0.3	0.8	0.9

For a typical comparison: $R_P = R_H(2)$ $N_P = 2065$ $R_S = 100 \Omega$ $N_S = 16$ $I_P = 50 \ \mu A$

Noise: 7 nV / Hz^{1/2}
U_A = 2 n
$$\Omega$$
 / Ω in 2 min

Universality of the quantum Hall effect

- Width dependence
- Contact resistance
- Device material: MOSFET, GaAs and **GRAPHENE**
- Device mobility
- Plateau index

Width dependence

Theoretical model:

$$\frac{\Delta R_H(i)}{R_H(i)} = \alpha \left(\frac{l}{w}\right)^2$$

$$\Delta R_H(i) = R_H(i, w) - R_H(i, w = \infty)$$

$$l = \sqrt{\hbar/eB}$$
 magnetic length

• No theoretical prediction for α

- A. H. MacDonald, P. Streda, 1984
- B. Shapiro, 1986
- W. Brenig and K. Wysokinski, 1986
- R. Johnston and L. Schweitzer, 1988.

Experiment

<u>Samples</u>: $\mu = 42 \text{ T}^{-1}$ $n = 4.8 \times 10^{15} \text{ m}^{-2}$

Measurement procedure:

- Cooling rate: a couple of hours
- T = 0.3K
- *V_{xx}* measured before and after measurements
- Trypically $R_{xx} < 100 \ \mu\Omega$
- R_H measured on two contact pairs
- Reference sample: 1 mm wide

- No size effect observed within the measurement uncertainty
- Value of α :

$$\alpha_2 = (-1.8 \pm 1.8) \times 10^{-3}$$

 $\alpha_4 = (0.7 \pm 5.0) \times 10^{-3}$

• Deviation on 500 µm wide samples:

- i = 2 < 0.001 ppb
- i = 4 < 0.003 ppb
- No influence

Effect of the contact resistance R_c

M. Büttiker, 1992: "...It is likely, therefore, that in the future, contacts will play an essential role in assessing the accuracy of the QHE."

On a perfectly quantised plateau:

$$R_c(P1) = V_{P1-P2} / I$$

To induce a high value of R_c : 1) Apply a high voltage (10 - 20V) at B = 0 2) Cool the QHR to base T in 2-3 min

Infrared illumination:

- Pulses with a 900 nm diode R_c
- Cable resistance 8.5 $\boldsymbol{\Omega}$

MOSFET-GaAs

```
• Hartland et al., NPL, 1991:
```

Direct comparison of two QHR using a CCC

 $\frac{\Delta R_{H} (\text{MOSFET} - \text{GaAs})}{R_{H}} \le 3.5 \times 10^{-10}$

- Kawaji, Yoshihiro (ETL), vanDegrift (NIST) 1992: Deviations in R_H(4) up to 0.3 ppm despite the absence of dissipation. MOSFET with small critical current, low gate voltage
- Theoretical model by Heinonen et al.: Perfect quantization with dissipation (short range elastic scatterers located at the edges)

MOSFET measurements

Measurements

Jeckelmann et al., OFMET, 1996

$$\frac{\Delta R_{H} (\text{MOSFET} - \text{GaAs})}{R_{H}} \le 2.3 \times 10^{-10}$$

SONY MOSFET

Anomalous results can be

explained by:

- contact effects
- asymmetric longitudinal

voltages

•
$$R_{xx} \approx 0 \longrightarrow \Delta R_H = 0$$

© metas 28.07.11

Ulm, July 2011 / Jt

Graphene (courtesy JT Janssen NPL)

Tzalenchuk, TJBMJ et al. Nature Nanotechnology 5, 186 (2010)

Graphene (courtesy of JT Janssen NPL)

Mobility

fabrication process to 2 parts in 10⁻¹⁰

Step ratio measurements

•
$$R_H$$
 independent of the plateau index to 3 parts in 10⁻¹⁰

$$\frac{i \cdot R_H(i)}{2 \cdot R_H(2)} = 1 - (1.2 \pm 2.9) \times 10^{-10}$$

i = 1, 3, 4, 6, 8

Summary

The quantum Hall resitance is a universal quantity independent of:

- Device width
- Device material: MOSFET-GaAs, Graphene
- Device mobility
- Plateau index
-to a level of 3 parts in 10¹⁰

Negligible dissipation:

- Small measuring current $I \ll I_c = 0.6$ mA/mm
- Low temperature T < 1.2 K
- Good quality electrical contacts $R_c < 10 \Omega$

$$R_H(i, R_{xx} \rightarrow 0) = h/ie^2$$

B. Jeckelmann and B. Jeanneret Rep. Prog. Phys. 64, 1603, 2001

CCEM Technical Guideline: F. Delahaye and B. Jeckelmann Metrologia 40, 217-223, (2003)

The SI unit: the Ampere

Définition:

L'ampère est l'intensité d'un courant constant qui, maintenu dans deux conducteurs parallèles, rectilignes, de longueur infinie, de section circulaire négligeable et placés à une distance de 1 mètre l'un de l'autre dans le vide, produirait entre ces conducteurs une force égale à 2×10^{-7} newton par mètre de longueur.

$$\frac{F}{l} = \frac{\mu_0 I_1 I_2}{2 \pi d}$$
$$\Rightarrow \mu_0 = 4\pi \times 10^{-7} \text{ Vs/Am}$$

$$c^2 = \frac{1}{\varepsilon_0 \mu_0}$$

$$C, \ \mathcal{E}_0, \mu_0$$
 are exact!!

The definition does not lead to a practical realisation of the Ampere!!!

The SI realisation of the Ohm: the calculable capacitor

Thompson-Lampard Theorem (1956):

Cross-capacitance identical:

$$C' = \frac{\varepsilon_0 \ln(2)}{\pi} \cong 1.95 \,\mathrm{pFm}^{-1}$$

CODATA 98: NPL88: $\Delta R_k / R_k = 5.4 \times 10^{-8}$ NIST97: $\Delta R_k / R_k = 2.4 \times 10^{-8}$ NML97: $\Delta R_k / R_k = 4.4 \times 10^{-8}$ NIM95: $\Delta R_k / R_k = 1.3 \times 10^{-7}$

A conventional value for R_{K}

SI Realization of R_{κ} :

a few parts in 10⁸ uncertainty

Reproducibility of R_{H} :

a few parts in 10¹⁰ uncertainty

2 orders of magnitude!

Conventional value (exact): CCE 1-1-90

 $R_{K-90} = 25 \ 812.807 \ \Omega$ $K_{J-90} = 483 \ 597.9 \ \text{GHz/V}$

Josephson effect: $K_J = 2e/h$

International QHR Key-comparison

Applications: DC Resistance Standard (data METAS)

 Deviation from fit < 2 nΩ/Ω over a period of 10 years

Applications: QHR Arrays

- On chip, large array of Hall bars (up to 100 devices)
- Series-parallel connection scheme: $R = R_K / 200$
- Accuracy of the quantization: 5 parts in 10^9 (T = 1.3 K, i = 2)
- Behave like a single Hall bar
- Transportable resistors for international comparison
- Nominal value of 100 Ω can be fabricated

Applications: QHE array

Universality tests: quantum Hall Wheatstone bridge

$$I_{ub} / I = V_{ub} / V \approx \frac{1}{4} [(\alpha_1 + \alpha_3) - (\alpha_2 + \alpha_4)]$$

 α_j (<<1): relative deviation of the jth resistor to $R_{\rm K}/2$

Relative deviation of one resistor among the others: $\Delta R/R = 4 \times (I_{ub.}/I) = 4 \times (V_{ub.}/V)$

On-chip fully integrated QHE Wheatstone bridge

LINE

Universality tests: quantum Hall Wheatstone bridge

QHE Wheatstone bridge with 4 GaAs/AlGaAs LEP 514 Hall bars

F. Schopfer et al, in: A.H. Cookson, T. Winter (Eds.), Proc. of the CPEM, Boulder, 2008, p. 22.

Current detection

- CCC equipped with a RF SQUID
- (3436 turns winding)
- \Rightarrow Current resolution: 400 fA/Hz^{1/2}
- Lock-in technique (0.15 Hz to 20 Hz)

Extrapolation to zero dissipation state (R_{xx}=0)

$\Delta R/R = -1.9 \times 10^{-12} + / - 3.18 \times 10^{-11}$

None of the four quantum Hall resistances departs from the others by more than 3 parts in 10¹¹

Towards an uncertainty of some parts in 10¹²

New CCC equipped with a DC SQUID

Applications: Capacitance calibration

- SI realisation of the Farad: Calculable capacitor
- Complicated experiment
- Representation of the Farad: DC QHE
- New route: AC measurements of the QHR

AC measurements of the QHE

- Narrow bumpy "plateau " (PTB, NPL, NRC, BIPM)
- Frequency dependence: $R_{H}(i, \omega) = \alpha \omega$ $\alpha = 1 -5 \ 10^{-7}/ \text{ kHz}$
- Measurements problem: AC Losses

AC-QHE: Phenomenological Model

Susceptibility: 2D Model (no gates, no screening electrodes, $d \ll L, d \ll w....$)

Model fully explain the measurements (frequency dependence):
 B. Jeanneret et al. 2006

© metas 28.07.11

Ulm, July 2011 / Jt

AC Losses

$$Z_{\rm H} = \frac{V_{\rm H}}{i} = \frac{V_{\rm H}}{i_{\rm H} - i_l} \approx R_{\rm H} \left(1 + \frac{R_{\rm H}}{V_{\rm H}}i_l\right) = R_{\rm H} (1 + \Delta)$$

Overney et al., 2003

Double-shielding technique (courtesy J. Schurr, PTB)

Meet the <u>defining condition</u>: ALL currents which have passed the Hall-potential line are collected and measured.

Adjust the high-shield potential sU so that $dR_H/dI = 0$.

B.P. Kibble, J. Schurr, Metrologia 45, L25-L27 (2008).

© metas 28.07.11

Realization of the capacitance unit (courtesy J. Schurr, PTB)

- relative uncertainty of 10 pF: 4.7.10⁻⁹ (k = 1)

(cryogenic quantum effect without 'calculable' artefacts)

 quantum standard of capacitance, analogous to R_{DC}

J. Schurr, V. Bürkel, B. P. Kibble, Metrologia 46, 619-628, 2009

Conclusions

- R_H is a universal quantity
- QHR improved electrical calibration in National Metrology Institutes
- QHR allows a representations of the Farad
- QHR is a primary standard for impedances: AC-QHE
- Future development: Graphene