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« Discrete » vs « continuous » L.

Light is :

Discrete .* Photons

ht

Continuous —Wh— Wave

We want to know :

their Number
& Coherence

its Amplitude & Phase (polar)
its Quadratures X & P (cartesian)

We describe it with :

Density Wigner
matrix function
Qn.m W(X.,P)
We measure it by : | Counting: Demodulating : Homodyne Detection

APD, VLPC, TES...

Local Oscillator Quantum State

0.
| Vo
’/’ ’/
V-V, o< X;=Xco0s0+Psin0
« Simple » States Fock States Gaussian States




Basic Properties of Linear Optical Amplifiers

e Phase sensitive vs phase insensitive amplifier
* Some classical and quantum applicatiosn !



Quantum Limits on Noise in Linear Amplifiers
Carlton M. Caves, Phys. Rev. D 26, 1817 (1982)

-

Input signal : Output signal :

Useful amplitude (squared) : { X, )? Useful amplitude (squared) : { X, )?
Fluctuations (noise) : { 6X;?) Fluctuations (noise) : ( 06X,

Signal to noise ratio : { X;, )2/ { 6X,?) Signal to noise ratio : {( X, )?/ { 6X,,?

Relevant quantity : "Noise Figure™ NF of the amplifier :

Input signal to noise ratio (X, )*/ {(6X;,?)
Output signal to noise ratio (X, )2/ { 8X, 3

out

NF =

NF should be small, minimum value =1 (or 0 dB).




Ultimate limit to the noise of an optical amplifier (1)

Let us consider a “phase-independant” amplifier, which multiplies the input
light field amplitude by the factor g (taken as a real number), for any phase

of this input field.
What is the associated transformation for the quantum field operators ?

Considering a single mode for simplycity, one may try :

f f

Qout = g9 QAin aout =g ain

But if [a.,-,n,a:.'n] = ] then [aout,a.";ut] = g2 : impossible !

Other approach :

aoutzgazn+\/92-1b1n alutzgarn-*-vgz—lbtn
One has then
[@out, als) = 9 [ain, aly) — (g7 = 1) [Bin, b =1
OK !



Spontaneous emission noise

Qout = g Ajn + 4/ ge~1 bgn a’c‘)ut —d a;n +1/9° = L bin

Interpretation : for an amplifier based on a population inversion, it is
unavoidable to get "spontaneous emission noise".

Exception : for some amplifiers (parametric amplifiers) one can manage to
have the two modes a and b exactly overlapping. The amplifier becomes a
"phase sensitive amplifier" or "squeezer")



Ultimate limit to the noise of an optical amplifier (2)

A "“phase independant” amplifier with gain g necessarily adds spontaneous
emission noise to the input signal :

Qout = § @in + 1/ 9% — 1 bl al,=gal + V9% —1bin

For a signal encoded in the quadrature operator X = a + al one has :
Xout =9 Xin+1/g2—1X;, with (X3)=0 and (0X7) =1

<Xout>2 = 92 (Xin)2
(6X2,4) = g (6X2) + (6% — 1) (6X3) = (29 — 1)(6X2)

One defines the “noise figure” (NF) of the amplifier :
input signal to noise ratio (Xin)2/ (JX?n) N 2g° — 1

N output signal to noise ratio  (Xpye)2/(6X2,) 92

NF =2 for g — o0



Energy levels of Erbium ions
in a silica (Si0,) matrix (optical fiber)

High-Index Core

— Erbium-Doped Core: p, atoms/m°

’ N7 @m\\
EDFA : Erbium Doped Fiber Amplifier SO

[~ R Length: L, i -]
Lavel 3 Yo ¥Actlve Area: A, m? i
o T % ol
Fas! decay
- Loved 2 \ Calculation of the gain:
nm
1580 N F. b g=0,(N,-N,)
:—- Spontaneous emission G = exp(gL)
$480 nen /(15001600 nm) _
& with :
i N, =1.8x101" cm3 (lower level)
'- \‘ mwm N, = 4.8x10Y7 cm™3 (upper level)

G, = 7.0x10% cm? (cross section)
g=2.1x103cm!
G=30dBforL=33m




Gain (0B)

Gain and Noise of an EDFA

Erbrum-doped fiber
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Optical Amplifier

- 4 THz of optical bandwidth near 1550 nm
- Nearly ideal noise performance

- Low signal distortion, low cross talk

- High-output saturation power

- Simple and efficient



EDFA
(Erbium Doped Fiber Amplifier)

- Avoids opto-electrical conversion of a repeater
- EDFAs amplify all 2.s in 1550 nm window simultaneously

- Pump laser is only active part
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Spontaneous emission noise

Qout = g Ajn + 4/ ge~1 bgn a’c‘)ut —d a;n +1/9° = L bin

Interpretation : for an amplifier based on a population inversion, it is
unavoidable to get "spontaneous emission noise".

Exception : for some amplifiers (parametric amplifiers) one can manage to
have the two modes a and b exactly overlapping. The amplifier becomes a
"phase sensitive amplifier" or "squeezer")



Ultimate limit to the noise of an optical amplifier (3)
In the “degenerate” case one may fully overlap the modes a and b, then :
Qout = g Qi + 1/ 9 —lat a:’mt=ga:-[n+vg2—la.m

The quadrature operators X =a+a' and Y = —i(a — at) become :

Xout=(9+ \/9 —1) Xin = 94 Xin
Yout = (9 — /9% — 1) Yin = (1/90) Y;

X is amplified, whereas Y is deamplified !
(Xout)? = g,% (Xin)®  (Your)® = (Yin)*/ 93
(OXGu) = 93 OX5)  (0¥gu) = (8Yi5) /93

The “noise figure” (NF) of the amplifier is equal to 1 for all gains :
input signal to noise ratio (Xin)?/ (6X %)

NF =
output signal to noise ratio (Xout)2/ (6X2,, )




Application of a phase-sensitive amplifier :
improvement of an homodyne detection

Take an imperfect homodyne detection with efficiency n<1

This degrades an input signal, for a coherent input the Noise Figure is :
NF=1/n>1

Just before the homodyne detection, add a phase sensitive amplifier on
the signal beam with gain G = g2, amplifying the measured quadrature.
For a coherent input the Noise Figure is then :

NF=1+{-m)/(Gn) =1 oG >1
The phase sensitive amplifier makes the homodyne detection perfect !



Coherent state continuous variables QKD protocol

Alice

Gaussian modulation

Shot

noise

I)

- Bob reveals measurement choice

Random measurement of the
quadrature of each coherent
state (with efficiency n)

Total channel-added noise:

x=1/T-1+ ¢
———’ --
equivalent to equivalent to
<Imors

photon loss

- Alice and Bob share a set of Gaussian correlated data

- Further communication to calculate channel parameters and denve

secret key based on Bob’s data — reverse reconciliation

F. Grosshans et al, Phys. Rev, Lett, 88, 057902 (2002) & Nawe 421, 238 (2003)

Key information encoded in both quadratures of a coherent state

f’(: 2?(: EEB lLve

( Quantum channel (7, ¢) ]

L+ Classical Channel (:m(h.)J

Bob

Excess
noise




Improving CVQKD with a phase-sensitive amplifier ?

Secret information rate (bit/pulse)
o o

dh
o

)
=
v

|
N
-

|
w

.

Individual attacks

Perfect

10 20 30 40 50
Distance (km)

o

In principle, it works !
(theory only : S. Fossier et
al,J. Phys. B 42114014
(2009), quant-ph/0812.4314)

"Perfect" : perfect detector

g=1: imperfect detector
with 1 = 0.6, no amplifier.

g= 3,20 : imperfect detector,
increasing the amplifier

gain : gets closer and closer
to perfect !



Towards quantum communications
and quantum networks ?

e Longer distances require quantum repeaters and
therefore « real » entanglement !

e Can we « amplify » entanglement ?
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o=  Linear deterministic amplifiers (Caves 1982)

Phase-independent amplifier Phase-dependent amplifier
(amplifies the amplitude for all (amplifies the amplitude a specific
values of the phase) value of the phase : “antisqueezing”)

= Adds excess noise — No excess noise
(3dB for large gain) = Keeps same signal to noise ratio
— Decreases signal to noise ratio — One must know the signal phase
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SOt T Non-deterministic nmseles_

Goal : wewant: |in)=|o) —— |out)=|g o)

which means

= Increases signal to noise ratio ?
= Breaks all rules ?

v
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et T==—  Non-deterministic noiseless optical amplifier

T.C. Ralph and A.P. Lund,
Nondeterministic Noiseless Linear Amplification of Quantum Systemes,
arXiv:0809.0326 (2008).

o)

1—r

1) |ga) g=

A-BS r
r,t

As such works for smalloconly: | O)+o|1)->] 0)+g a|1)
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T. C. Ralph and A.P. Lund, arXiv:0809.0326 (2008) : theory

Non-deterministic noiseless optical amplifier ?

G. Y. Xiang et al, arXiv:0907.3638 (2009) + Nature Photonics (2010) : theory + expt
J. Fiuracek, Phys. Rev. A 80, 053822 (2009) : theory
F. Ferreyrol et al, arXiv:0912.2065 (2009) + PRL 104, 123603 (2010) : expt
A. Zavatta et al, arxiv:1004:3399 + Nature Photonics (2011) : expt

* If deterministic, the transformation | o.) = | g o) is obviously non unitary,

and is not even a positive map : it must be probabilistic !

* Simple approach (Ralphetal): | a)(al = P| ga)(gal +(1-P) | 0)(0

OK if P is small enough ( very small if |at| or g becomes large...)

* Scalable to large || ?

| o) | g o)

- A — >
g 5o
0-|E—E—EP 0
10)-+| £ A £ P (©l

L J o . o Y

. IQ. L J |o- *

L Z L J z L J
|0)..-| N A o~ _'(0|

Yes (Ralph et al)

Amounts to apply the
operator g" (n number
of photons) which is
unbounded

No (Fiuracek)

OK for all practical
purposes (e.g. CVQKD :
gaussian distribution of

coherent states with
finite variance)

OK?
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Setup of the experiment Heralds
- ./ampliﬁqat@i

\
| Y

\

phase
reference

S-BS

OPA

sale
analysis

1) *¥-Bs

- e e e

) LO T

Qutput of
the amplifier

F. Ferreyrol et al. Phys. Rev. Lett. 104, 123603 (2010)

Experimental set-up ] W:ﬂ

QIFC

Low probability of
detection of 2 photons
after S-BS

=» One APD is sufficient

Polarization encoding
=» Preserve phase
stability

Success probability:
1% to 6%

Work with Simon Fossier
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Tomography of the amplified state

Nominal value of the gain (by adjusting the A-BS) : g =2
Phase — independant gain !
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Gain and Noise

QIPC

Amplitude gain (g4 = 2 : gain 6 dB) Equivalent Input Noise N,
| 40 i N
TS — : |
* = : (6X%.) N
y 15 Neq ut — <5X > i
u-: <X0ut> 3 geﬁ |
(geﬂ.-_- )( "~ ‘01 i
. < in> S SN v ;
. 3' asd Phase-independant amplifier ,
 [BE2ET B3 S NS S e v onl v e T R B F ;
" :
: 00
25+ 3
R 031

Negative values of the
Equivalent Input Noise !

Gain up to 6 dB for small o
Phase independant !
Saturates rather quickly SNR

.
(ok if o0 <0.1) NF = §i\_l_|i.om = ----”v---ﬁg < 1 ???
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AAAAAAAAAAAAAA Violation of QM... ? no!

Example : Gaussian modulation with a small amplitude (CVQKD)
Use Shannon’s formula for the mutual information :

l,g = 72 Log( 1 + SNR)

= lag ampii = 72 LOg(1 + 8% SNR) > 1,5 !?!

_ — (1_¢2 !
IAB,ampIi,average - Psuccess IAB,ampIi - (1 r ) IAB < IAB OK!

Most interesting use of this amplifier :

increase squeezing or entanglement !

*If the input is a squeezed state, the squeezing is increased, without
knowing the direction of the squeezed quadrature !

* If the input is an EPR state (two-mode squeezed state), the
entanglement is increased (if Bob communicates classically with Alice) !



A very useful equivalence : "virtual entanglement" -

Alice Bob
Alice prepares a
random quantum state Eve and Bob receive the states
and sends it to Bob prepared by Alice
Alice > Bob
Alice measures half an EPR
state, the other half goes to The density matrix received Eve and Bob is the
Bob same 1n both cases : Eve cannot know more !

"Prepare and measure' protocol is equivalent to an entangled state protocol !
This equivalence is extensively used in security proofs



\

ey h
« Winning » mutual 1nf0rm. 7

Q/IPC

Mutual information win !

in the « winning » case r\
15 T ] Alice EPR Bob

Xx"|Inn)y=22 (gx)"|nn)

Averaged mutual information

v
'

~

Can we use this for Quantum Cryptography ?
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*
-
-

*

Alice

* Gaussian CVQKD, Eve performs a beam-splitting attack + noise

* Consider equivalent ("virtual") entangled scheme with EPR state
* Consider realisticf<1

* Can the noiseless amplifier (NLA) be helpful ?

Preliminary question : what is the best possible success rate of the NLA ?
Answer : 1/g?2

First question : is the NLO useful for T <1 with no excess noise ?
Answer : no ! Better to optimize the variance of the state (i.e. )

Second question : is the NLO useful with excess noise in the line ?
Answer : yes ! The NLO is able to "erase" the excess noise.



\

M== Can we use the NLA for CVOQKD .

—l)(e—2)T 2
g?2—-1)eT—-2 '
g°T
( > : E . ~ (g? ~1)T((g2-1)(e—2)eT —e+1) +1’
A_dL ) \ Y& il = eg=e—l(g ~1) (e —2)T.

2

AIS(A,T,e, B) = AI(¢,m, €, B)

- = = Numerical

w— Anaiytical
expansion
(T<<1)

€=0.05, =0.95 The maximum tolerable losses are

increased by 20 log,, g =12 for g =4.

Maximized key mute (hitAmpulsion)

10-* - R. Blandino et al, arxiv:1205.0959
. - @) ' Phys. Rev. A 86,012327 (2012)
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Alice

In this scheme, there is "real" entanglement and "real" amplification

First question : We know that we can use "virtual” entanglement, can we
also use "virtual” amplification ?

Answer : yes ! (according to some unpublished preprints)

Second question : But how to do it ?
Answer : in a P&M scheme, use (Gaussian) postselection + rescaling

See: J. Fiuracek and N.J. Cerf, arxiv:1205.6933
N. Walk, T.C. Ralph et al, , arxiv:1206.9936



insTITUT = { comemons
worner==  Can we use the NLA for CVQKD ? “ﬂ
( ‘ -_QIC
Eve )’\
Alice Bob | win!
(AT y,

In this scheme, there is no "real” entanglement neither "real” amplification

First question : We know that we can use "virtual” entanglement, can we
also use "virtual” amplification ?

Answer : yes ! (according to some unpublished preprints)

Second question : But how to do it ?
Answer : in a P&M scheme, use (Gaussian) postselection + rescaling

See: J. Fiuracek and N.J. Cerf, arxiv:1205.6933
N. Walk, T.C. Ralph et al, , arxiv:1206.9936



Conclusion

Many potential uses for Quantum Continuous Variables...

* Quantum cryptography
* Coherent states protocols using reverse reconciliation,

secure against any (gaussian or non-gaussian) collective attack
* Working fine in optical fibers @ 1550 nm (SECOQC / SEQURE projects)

* Towards long distance / repeaters
* Use entangled / non-gaussian states (with negative Wigner functions)

* Many experimental results by our group, and many others :
A. Lvovsky, M. Bellini, E. Polzik, T. Gerrits, A. Furusawa, M. Sasaki...

* First steps towards : - entanglement distillation procedures ?
- new tests of Bell's inequalities ?
- quantum computing ? (QCV version of KLM...)
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