

Neutrons test Newton's law GRAVITY AND QUANTUM INTERFERENCE

Hartmut Abele Blaubeuren I, 30 July 2013 TU Wien

Hartmut Abele, Vienna University of Technology

<u>Show Case I:</u>

Test of Gravitation at Short Distances with Quantum Interference

Schrödinger Equation

$$-\frac{\hbar^2}{2m}\Delta\psi + V(z)\psi = E\psi$$

V(z) = mgz for $z \ge 0$ and $V(z) = \infty$ for z < 0

Scale with length scale z₀

$$\zeta = \frac{z}{z_0}$$

Shift

$$\psi_n(\zeta) = Ai(\zeta - \xi_n)$$

Turning Points:

$$z_1 = 13.7 \mu \text{m}, z_2 = 24.1 \ \mu \text{m}$$

Neutron

Mirror

Ζ

Distance to Mirror

<u> Bounce</u>

the dynamics of ultra-cold neutrons in the gravity potential the free Fall

Quantum interference:

sensitivity to fifth forces coming from extra dimensions string theories (higher dimensional field theories) or axion fields *at short distances*

Theory:

Kajari et al., Inertial and gravitational mass in quantum mechanics,

Appl. Phys. B 100, 43 (2010)

- Julio Gea-Banacloche, Am. J. Phys.(1999)
- H.A. et al., PRD (2010)

<u>QBOUNCE: NEUTRONS TEST NEWTON'S LAW</u>

the dynamics of ultra-cold neutrons in the gravity potential

Absorber

1st Mirror

mirror

x = 6 cm

- Discrete energy levels
- Ground state 1.4 peV 4
- Airy-Functions

Abele, H., Jenke, T., Stadler, D., & Geltenbort, P. QuBounce: The dynamics of ultra-cold neutrons falling in the gravity potential of the Earth. *Nucl. Phys.* **A827**, 593c (2009), Fig. from Dubbers

How are Neutrons detected?

Convert a neutron into charged particles by a nuclear reaction

+1000 V

5330 b

940 b

254000 b

3838 b

Neutron converter

- ³He + n \rightarrow ³H + p + 0.76 MeV
- ⁶Li + n \rightarrow ³H + α + 4.49 MeV
- 157 Gd + n \rightarrow 158 Gd + γ + e⁻(29-181 keV)
- ¹⁰B + n → ⁷Li + α + 2.79 MeV (6%)

→ $^{7}Li^{*} + \alpha + 2.31$ MeV (94%) $^{7}Li + \gamma$ (0.48 MeV)

Detectors for ionising particles:

- Gas detektors
- Szinitillation detectors
- Solid state detectors

Courtesy: Dr. Martin Klein, CDT

Thesis T. Jenke

<u>**CR39-plastic detector**</u> $n+{}^{10}B \rightarrow {}^{7}Li^* + \alpha$

- Spatial resolution: 1.5 μm 2 μm
- Boron conversion efficiency: 91%
- Detector efficency: ~ 62 %

T. Lauer et al.: CMOS Detectors

• CMOS Chip coated with B, pixel size ~ 3 μ m Eur. Phys. J. A (2011) **47**: 150

Hartmut Abele, Vienna University of Technology

<u>**CR39-plastic detector**</u> $n+{}^{10}B \rightarrow {}^{7}Li^* + \alpha$

DOKTORATSKOLLEG

Outline II

• **qBounce**

- High resolution ~ $1\mu m$
- Large Area ~ 10 cm

ucn sources

 Precision experiments in particle- and astrophysics with cold and ultracold neutrons

• Gravity Resonance Spectroscopy and *q*Bounce

• Limits on dark matter / dark energy particles

Key Technique: Gravity Resonance Spectroscopy

- atomic clocks
- nuclear magnetic resonance spectroscopy
- spin echo technique
- quantum metrology
- gamma resonance spectroscopy

Test Newton's law at short distances:

- **String Theories**
- **Dark Matter**
- **Dark Energy**

Rabi-Gravity-Spectroscopy

Neutron Production at the ILL Fission: 2 MeV Thermal: 25meV, 300K **Cold: 4 meV, 40K**

Neutron Production Fission: 2 MeV Thermal: 25meV, 300K **Cold: 4 meV, 40K** ultra cold: 100 neV, 1mK Gravity Experiment: 1 pico-eV

Neutron Production

Quantum Bounce

System Neutron & Earth

- Neutron bound in the gravity potential of the earth
- <**r>** = <mark>6 μm</mark>
- Ground state energy of 1.4 peV
- **1 dim.**
- Schrödinger Equ.
 - Airy Functions

Hydrogen Atom

- Electron bound in proton potential
- Bohr radius <r> = 0.1 nm
- Ground state energy of 13 eV
- <mark>3 dim.</mark>
- Schrödinger Equ.
 - Legrendre Polynomials

Neutrons test Newton's law GRAVITY AND QUANTUM INTERFERENCE

Hartmut Abele Blaubeuren II, 30 July 2013

Tool: Ultra-Cold Neutrons

Strong Interaction: V ~ 100 neV

Kinetic Energy: < 100 neV 3m/s < v < 20m/s

Magnetism, Zeeman splitting : 120 neV/T

Energy in the earth's gravitational field:

E = mgh 100neV/m

Neutron Production Fission: 2 MeV Thermal: 25meV, 300K **Cold: 4 meV, 40K** ultra cold: 100 neV, 1mK Gravity Experiment: 1 pico-eV

Neutron Production Fission: 2 MeV Thermal: 25meV, 300K **Cold: 4 meV, 40K** ultra cold: 100 neV, 1mK Gravity Experiment: 1 pico-eV

Quantum States in the Gravity Potential

Demonstration of Quantum States in the Gravity Potential of the Earth Nesvizhevsky, H.A. et al. Nature 2002

qBounce, 2009

Key Technique: Gravity Resonance Spectroscopy

- atomic clocks
- nuclear magnetic resonance spectroscopy
- spin echo technique
- quantum metrology
- gamma resonance spectroscopy

Test Newton's law at short distances:

- **String Theories**
- **Dark Matter**
- **Dark Energy**

Rabi-Gravity-Spectroscopy

Gravity and Quantum Mechanics

Schrödinger equation:

$$\left(-\frac{\hbar^2}{2m}\frac{\partial^2}{\partial z^2} + mgz\right)\varphi_n(z) = E_n\varphi_n(z)$$

boundary conditions:

 $\varphi_n(0) = 0$ with 2nd mirror at height $\varphi_n(l) = 0$

Solutions: Airy-functions: Ai & Bi

State Selection by a rough neutron mirror

Show Case II: Rabi-type Spectroscopy of Gravity

Gravity Resonance Spectroscopy Technique to explore gravity

NMResonance Spectroscopy Technique to explore magnetic moments

3 Regions:

I: 1st State selector/ Polarizer

II: Coupling

- RF field
- Vibr. mirror

III: 2nd State Selector / Analyzer

Rabi Spectroscopy

NMResonance Spectroscopy Technique to explore magnetic moments

FIG. 5. Resonance curve of the F19 nucleus observed in NaF.

IG. 4. Resonance curve of the Li⁷ nucleus observed in LiCl. . 3. Resonance curve of the Li⁶ nucleus observed in LiC

Show Case II: Rabi-type Spectroscopy of Gravity

$$\omega_{21} = \frac{E_2 - E_1}{\hbar}$$

$$\Omega_R \times t = \pi$$

$$\Omega_{R}^{\prime} = \sqrt{\Omega_{R}^{2} + (\omega_{pq} - \omega)^{2}} = \sqrt{\Omega_{R}^{2} + \delta^{2}},$$

$$P(t) = \left(\frac{\Omega_{R}}{\Omega_{R}^{\prime}}\right)^{2} \sin^{2}\left(\frac{\Omega_{R}^{\prime}}{2}t\right)$$

Frequency Reference for Gravitation

- Based on 2 natural constants:
 - Mass of the neutron m
 - Planck constant h
 - Plus Acceleration of earth g

$$\omega_0 = \left(\frac{9\pi^2 mg^2}{8\hbar}\right)^{1/3}$$

$$E_n = \hbar \omega_0 \left(n - \frac{1}{4} \right)^{2/3}$$

Discoveries: the dark universe

Spectroscopy of Gravity

- It does not use electromagnetic forces
- It does not use coupling to em Potential

Hyothetical gravity-like forces

- Axions?
- Chameleons?

10⁻¹⁴ eV Scale

constraint on any possible new interaction

Neutrons test Newton

$$V(r) = G \frac{m_1 \cdot m_2}{r} (1 + \alpha \cdot e^{-r/\lambda})$$

For a neutron with mass m_n , gravitational constant G, mass m_E and density ρ of the earth with radius R_E ($r = R_E + z$), V(r) is usually approximated by

$$V(z) = m_n g z$$

$$V(z,\lambda) = 2\pi m_n \rho \alpha \lambda^2 G e^{-2|z|/\lambda} = \alpha \times 2 \times 10^{-12} \,\mathrm{peV}$$

Sensitivity

$$V(r) = G \frac{m_1 \cdot m_2}{r} (1 + \alpha \cdot e^{-r/\lambda})$$

Count note: 0 1 -- 1

$$V(z,\lambda) = 2\pi m_n \rho \alpha \lambda^2 G e^{-2|z|/\lambda} = \alpha \times 2 \times 10^{-12} \,\mathrm{peV}$$

	Count rate: 0.15 -
$\Delta \varphi \times \Delta N = 2\pi$	N = 10 ⁶ after 50 days
$N = 10^6 \rightarrow \Delta \varphi = 10^{-3}$	Observation time T = 130ms
$\varphi = \omega \times t = E \cdot t /\hbar$	H A et al
$\Delta \varphi = \Delta E \cdot t / \hbar$	PRD 81, 065019 (2010) [arXiv:0907.5447]
$\Delta E = \Delta \varphi \hbar / T = 0.33 \hbar / s$	Fifth force: Δφ
$N = 10^{6}$	$\mathbf{T}(\cdot,\cdot) = \sum_{i=1}^{\infty} -iE_{i}t/\hbar_{i} \cdot (\cdot)$
$\Delta E = 4.8 \times 10^{-5} \mathrm{peV}$	$\Psi(z,t) = \sum C_n e^{-iE_n t/n} \psi_n(z)$
$\alpha = 7 \times 10^7 \rightarrow 7 \times 10^4 - 10$	\rightarrow 7×10 ³ , $\Delta E = 4.8 \times 10^{-21} \text{eV}$
Limits on hypothetical gravity-like forces

$$V(r) = G \frac{m_1 \cdot m_2}{r} (1 + \alpha \cdot e^{-r/\lambda})$$

- So far best limits from AFM
 - large effects from Casimir or Van der Waals forces
- Neutrons:
 - Polarizability extremely small

Hartmut Abele, Vienna University of Technology

Casimir Force

Atom

Neutron: Casimir force absent

Example Rb

$$V(r) = \frac{3\hbar c}{2\pi} \frac{a_0}{r^4}$$

$$a_0 = 2, 3 \times 10^{-23}$$
$$V(r) = \frac{3\hbar c}{2\pi} \frac{a_0}{r^4}$$
$$= 0.6 \text{peV}$$

Polarizability extremely small:

$$a_n = 11.6 \times 10^{-4} \text{ fm}^3$$
$$D = 4\pi\varepsilon_0 a_n E$$
$$= 6 \times 10^{-41} \text{ eV} \times E\left[\frac{\text{V}}{\text{m}}\right]$$
$$= 10^{-18} \text{ peV}$$

Friedman DGL

Neutrons test Newton

$$V(r) = G \frac{m_1 \cdot m_2}{r} (1 + \alpha \cdot e^{-r/\lambda})$$

Hypothetical Gravity Like Forces

Extra Dimensions:

The string and D_p -brane theories predict the existence of extra space-time dimensions

Infinite-Volume Extra Dimensions: Randall and Sundrum

Exchange Forces from new Bosons: a deviation from the ISL can be induced by the exchange of new (pseudo)scalar and (pseudo)vector bosons

Strength α

🥌 Range λ

- Scalar boson. Cosmological consideration
- Bosons from Hidden Supersymmetric Sectors
- Gauge fields in the bulk (ADD, PRD 1999) - - \rightarrow 10⁶ < α < 10⁹

Supersymmetric large Extra Dimensions (B.& C.) - - - $\rightarrow \alpha < 10^{6}$ Chameleon fields-

Show Case III: Search for gravity-like forces

Resonance Spectroscopy Technique to explore gravity

Rabi-type experiment with damping

- realization of gravity resonance method possible
- simple setup, no steps
- high(er) transmission
- upper mirror introduces 2nd boundary condition

T. Jenke, SPP1491-Treffen 2012, Frauenchiemsee

Stability

Vibrations

Inclinometers

Hartmut Abele, Technische Universität München

D. Stadler, Diploma thesis, 2009 44

Horizontal velocity

Gravity Resonance

50 days of beam time, **116 measurements**

Gravity Resonance Spectroscopy 2012

Quintessence Theories

- It could well be that the universe is not in a vacuum state at all and has a dynamical evolution

$$T_{\mu\nu} = (\rho + p)u_{\mu}u_{\nu} + pg_{\mu\nu}$$

$$\ddot{\phi} + 3H\dot{\phi} + \frac{dV}{d\phi} = 0$$
$$p_{\phi} = \frac{\dot{\phi}^2}{2} - V(\phi)$$

Dark Energy – Scalar Fields

- Chameleon fields, Brax et al. PRD 70, 123518 (2004)
- Solution 2 Parameters β , n

$$V_{\rm eff}(\phi) = V(\phi) + e^{\beta \phi/M_{\rm Pl}} \rho.$$

n

<u>q</u>Bounce and Chameleons

Sounds on coupling β

 By comparing transition frequency with theoretical expectation:

$$\omega_{ab} - \omega_{ab}^{\text{theo}} = \beta \frac{m}{M} \left(\langle a | \phi(z) | a \rangle - \langle b | \phi(z) | b \rangle \right)$$

- as long as $\beta > 10^5$
- Cite as: arXiv:1207.0419v1

FIG. 2: The profiles of a chameleon field, calculated in the strong coupling limit as the solutions of Eq.(81) in the spatial region $z^2 \leq \frac{d^2}{4}$ and $n \in [1, 10]$.

Dark Energy – Scalar Fields

- Chameleon fields, Brax et al. prd 70, 123518 (2004)
- Solution 2 Parameters β , n

$$V_{\rm eff}(\phi) = V(\phi) + e^{\beta \phi/M_{\rm Pl}} \rho.$$

n

qBounce and Chameleons

Sounds on coupling β

 By comparing transition frequency with theoretical expectation:

$$\omega_{ab} - \omega_{ab}^{\text{theo}} = \beta \frac{m}{M} \left(\langle a | \phi(z) | a \rangle - \langle b | \phi(z) | b \rangle \right)$$

- as long as $\beta > 10^5$
- Cite as: arXiv:1207.0419v1

FIG. 2: The profiles of a chameleon field, calculated in the strong coupling limit as the solutions of Eq.(81) in the spatial region $z^2 \leq \frac{d^2}{4}$ and $n \in [1, 10]$.

Applications II: Strongly coupled chameleons

$$V_{\text{Chameleon}} = \beta \frac{m}{M_{Pl}} \Lambda \left(\frac{n+2}{\sqrt{2}} \frac{\Lambda}{d} \left(\frac{d^2}{2} - z^2 \right) \right)^{\frac{2}{n+2}}$$

Dark Energy – Scalar Fields

- Chameleon fields, Brax et al. PRD 70, 123518 (2004)
- Solution 2 Parameters β , n

$$V_{\rm eff}(\phi) = V(\phi) + e^{\beta \phi/M_{\rm Pl}}\rho.$$

n

Systematic effects

- Polarizability effects: 10⁻³⁰ eV
- Tidal effects: 10⁻¹⁹ eV
- I kg in close approximantion: 10⁻¹⁹ eV
- The inclination of setup is stabilized to 10⁻²⁷ eV level
- roughness and waviness: below 10⁻¹⁹eV
- External magnetic field gradients are suppressed by a factor of 20.
- The experiment is evacuated to approx. 10⁻⁴ mbar

Hartmut Abele, Vienna University of Technology

Neutron Mirror

- triple-beam interferometer
 - nm precision
 - Laser interferomic measurements
 - z₋ triaxial, length measurements

Response Function of the Vibration Control System

Limits on Axions

- SM: $\mathbf{0} < \mathbf{\theta} < 2\pi$ $\mathcal{L}_{QCD} = -\frac{1}{2} \operatorname{tr}(G_{\mu\nu} G^{\mu\nu}) + \bar{q}(i\mathcal{D} - \mathcal{M})q + \frac{\theta}{16\pi^2} \operatorname{tr}(\tilde{G}_{\mu\nu} G^{\mu\nu})$ $\mathbb{EDM \text{ neutron}} \mathbf{\theta} < \mathbf{10^{-10}}$
- Axion: Spin-Mass coupling $g_s g_p/\hbar c$: $\theta = 0$

Science week TU Munich 08, Georg Raffelt:

Lee-Weinberg Curve for Neutrinos and Axions

AXION: PDG Exclusion Ranges

PDG Exclusion Ranges on Axion masses

Applications I: Spin-dependant short-ranged interactions

Casimir Force

Atom

Neutron: Casimir force absent

Example Rb

$$V(r) = \frac{3\hbar c}{2\pi} \frac{a_0}{r^4}$$

$$a_0 = 2, 3 \times 10^{-23}$$
$$V(r) = \frac{3\hbar c}{2\pi} \frac{a_0}{r^4}$$
$$= 0.6 \text{peV}$$

Polarizability extremely small:

$$a_n = 11.6 \times 10^{-4} \text{ fm}^3$$
$$D = 4\pi\varepsilon_0 a_n E$$
$$= 6 \times 10^{-41} \text{ eV} \times E\left[\frac{\text{V}}{\text{m}}\right]$$
$$= 10^{-18} \text{ peV}$$

Priority Programme 1491

- Research Area A: CP-symmetry violation and particle physics in the early universe
 - Neutron EDM $\Delta E = 10^{-23} \text{ eV}$
- Research Area B: The structure and nature of weak interaction and possible extensions of the Standard Model
 - Neutron β -decay V A Theory
- Research Area C: Relation between gravitation and quantum theory
 - Neutron bound gravitational quantum states
- Research Area D: Charge quantization and the electric neutrality of the neutron
 - Neutron charge
- Research Area E: New measuring techniques
 - Particle detection
 - Magnetometry
 - Neutron optics

Test of Gravitation with Quantum Objects

M. Zawisky: Neutron Interferometry

- Rauch, Treimann, Bonse:
 - Test of a Single Crystal Neutron Interferometer", Physics Letters 47 A (1974) 369-371

COW-Experiment

theoretical prediction $q_{\rm grav} = 59.2 \pm 0.1$ rad

68

Table 12

History of gravity-induced interference experiments with symmetric (sym.) and skew-symmetric silicon interferometers

Ref.	Interferomete	r λ (nm)	A_0 (cm ²)	Θ_B (deg)	<i>q</i> _{COW} (theory) (rad)	<i>q</i> _{COW} (exp) (rad)	<i>q</i> bend (rad)	Agreement with theory (%)
[380]	Sym.#1	1.445(2)	10.52(2)	22.10(5)	59.8(1)	54.3(2.0)		12
[386]	Sym.#2	1.419(2)	10.152(4)	21.68(1)	56.7(1)	54.2(1)	3.30(5)	4.4
		1.060(2)	7.332(4)	16.02(1)	30.6(1)	28.4(1)	2.48(5)	7.3
[382]	Sym. #2	1.417(1)	10.132(4)	21.65(1)	56.50(5)	56.03(3)	1.41(1)	0.8
[383]	Skew-sym.							
(440)	Full range	1.078(6)	12.016(3)	34.15(1)	50.97(5)	49.45(5)	2.15(4)	3.0
	Rest. range	1.078(6)	12.016(3)	34.15(1)	50.97(5)	50.18(5)	2.03(4)	1.5
(220)	Full range	2.1440(4)	11.921(3)	33.94(1)	100.57(10)	97.58(10)	1.07(2)	3
	Rest. range	2.1440(4)	11.921(3)	33.94(1)	100.57(10)	99.02(10)	1.01(2)	1.5
[383]	Large Sym.							
(440)	Full range	1.8796(10)	30.26(1)	29.30(1)	223.80(10)	223.38(30)	4.02(3)	0.6
(220)	Rest. range	1.8796(10)	30.26(1)	29.30(1)	223.80(10)	221.85(30)	4.15(3)	0.9

The restricted (rest.) range data means that the tilt angle $|\alpha| = 11^{\circ}$. The two wavelengths of [383] are diffracted by the (220) or (440) lattice planes. The table is based on [21].

New Plans

70

αn

αn

αn

A2

some key features of the new setup at ILL-S18 (France) :

- Larger areas, higher sensitivity (gain factor ≥ 5 at 2.72Å to previous experiments)
- Small rotations reduce bending effects
- Thick base + rotation along an axis of elastic symmetry reduce crystal bending
- Three different areas selectable without changing the setup
- By comparison of the phase shift gained by A1 and A2 diffraction corrections within the crystal lamellas cancel out to first order
- Several harmonics (2.72, 1.36, 0.91Å) available with identical beam geometry
- Narrow wavelength distribution 5x10⁻³
- Nearly perfect symmetric lattice orientation, no offset in αrotation and simplification of the dynamical diffraction model

thicker base, smaller contact area Length 30 cm, beam sep aration 6 cm, beam area 150 cm²(COW), step plates for simultaneous gravitation + high angular resolution experiments

Improved sensitivitiy for COW gravitation experiments:

$$\frac{\Delta g}{g} = 6 \times 10^{-8}$$

Improved angular sensitivity:

$$\delta\theta = 10^{-6} \text{ sec of arc } (5 \times 10^{-12} \text{ rad})$$
$$\Delta q \ge 2 \times 10^{-10} \text{ nm}^{-1}$$

S:
$$\Delta V = m_g g \Delta h$$

Müller, Peters, Chu. Claim Red shift, Nature 2010

Outlook

• Tests of Newton's Inverse Square Law of Gravity at micron distances

• Search for an electric charge of the neutron

Proposal: H. A. et al., Phys.Rev. D81,065019 (2010)

The Future: Ramsey-Method

Hartmut Abele, Vienna University of Technology

Charge quantization and the electric neutrality of the neutron.

Since the Standard Model value for q_n requires extreme fine tuning, the smallness of this value may be considered as a hint for GUTs, where q_n is equal to zero. 1200

Region 2

Mirror 3,

flight path L

Energy

Polarizer

Mirror 2

oscillator,

flight path I

Quantum state |q>

Quantum state |p>

and scatterer with coupled

Mirror 1

on top

Region 1

 $\pi/2$ -flip

on bottom

flight path I

Area A (electric fields) Area A/E (magnetic shielding, measuring techniques) ... a need for best sources

Distance between electrodes on mirrors [µm]	Electric field [kV/mm]
24	52
51	39
76	33
100	27

discovery potential:

$$\delta q_n (t = 1 \, day) = 3 \cdot 10^{-20} q_e$$

using less than 10.000 neutrons...

The Team at Atominstitut

Gravity tests with quantum objects

 G. Cronenberg, H. Filter, T. Jenke, H. Lemmel, M. Thalhammer, Collaboration HD, TUM, ILL: P. Geltenbort (ILL), U. Schmidt (HD), T. Lauer (TUM),

Neutron Beta Decay, PERC collaboration

J Erhart, E.Jericha, C.Goesselsberger, C.Klauser, G.Konrad, H. Saul
X.Wang, Collaboration with HD, MZ, TUM, ILL

Interferometry

Y. Hasegawa, H. Geppert, M.Zawisky, T.Potocar, D.Erdösi,
S.Sponar

Neutron Radiography

- M. Zawisky,

N_TOF/USANS, E. Jericha, G. Badurek,

*q*BOUNCE Summary

Progress Report with Galileo in Quantum Land

- **qBounce: first demonstration of the quantum bouncing ball**
 - Dynamics: time evolution of coherent superposition of Airy-eigenfunctions
- Realization of Gravity Resonance Spectroscopy:
 - Coherent Rabi-Transitions,
 - $|1\rangle \rightarrow |2\rangle$
 - $|1\rangle \rightarrow |3\rangle$, see Nature Physics, 1 June 2011
 - $|2\rangle \rightarrow |3\rangle, |2\rangle \rightarrow |4\rangle$
- <u>New Tool for</u>
 - A Search for a deviation from Newton's Law at short distances, where polarizability effects are extremely small, see H.A. et al., PRD 81, 065019 (2010) [arXiv:0907.5447]
 - A quantum test of the equivalence principle
- Direct limits on axion coupling / chameleons at short distances,