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2 1 Quantum Mechanics

1 Quantum Mechanics

1.1 Schrödinger equation

i~
∂

∂ t
|ψ(t)〉 = Ĥ |ψ(t)〉 (1)

|ψ(t)〉 State vector; element of Hilbert space H (= vector space over complex
numbers, with scalar product)

Ĥ Hamilton operator (self-adjoint (hermitean) operator on a Hilbert space H)
Formal solution for Ĥ time-independent

|ψ(t)〉 = U(t) |ψ(0)〉 with
U(t) = e−

i
~ Ĥt (2)

U(t) Time-evolution operator. U(t) is unitary:

U(t)U(t)† = e−
i
~ Ĥte

i
~ Ĥt

hermiticity
= 1 = U(t)†U(t) (3)

1.2 Measurements: Positive Operator Valued Measure (POVM)
Def. (POVM): A set of positive operators {Êµ}, i.e. Êµ ≥ 0 with

∑
µ Êµ = 1 is a

POVM. Êµ is called “POVM element”.
The state of % after the outcome i occurs becomes

%i =
Ui
√
Êi%
√
ÊiU

†
i

tr
(
Êi%
) . (4)

• Probability to find outcome µ is pµ = tr
(
Êµ%

)
.

• POVM can be seen as a v. Neumann measurement on a higher-dim. Hilbert
space

Example: Unambiguous state discrimination
Consider two non-orthogonal pure states

|u〉 = cosα |0〉+ sinα |1〉
|v〉 = sinα |0〉+ cosα |1〉 , where 〈u |v〉 = sin(2α) (5)

Task: distinguish |u〉 and |v〉 without making mistake:

Êu =
1−

∣∣v〉〈v∣∣
1 + sin(2α)

detects u with certainty

Êv =
1−

∣∣u〉〈u∣∣
1 + sin(2α)

detects v with certainty

Ê? = 1− Êu − Êv inconclusive result (6)
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2 Qubits
• classical information processing with binary alphabet: variable can take

values 0 or 1, “bit”

• quantum information processing: information carriers are quantum states,
basis states |0〉 and |1〉, but the sate |ψ〉 can be in any superposition.

• Realization: spin-1
2

particle, linearly polarized photon, atom in ground/exited
state, etc.

General normalized pure state of a qubit:

|ψ〉 = cos
θ

2
|0〉+ eiφ sin

θ

2
|1〉 , with 〈i |j〉 = δij (7)

and 0 ≤ θ ≤ π and 0 ≤ φ ≤ 2π. Basis states:

|0〉 ≡
(

1
0

)
,

|1〉 ≡
(

0
1

)
. (8)

2.1 The density matrix
For pure states: |ψ〉 =

∑
i ci |i〉 with 〈i |j〉 = δij ,

∑
i cic

∗
i = 1 (normalization)

Representation of pure states as density matrix:

%pure =
∣∣ψ〉〈ψ∣∣ (9)

Mixed quantum states, i.e. mixture of projectors onto pure states:

%mixed :=
∑
j

pj
∣∣ψj〉〈ψj∣∣ with pi ≥ 0,

∑
i

pi = 1 (10)

Interpretation: A source emits state |ψi〉 with probability pi, or % describes a
subsystem of a larger Hilbert space:

• % = %†

• tr(%) = 1 (normalization)

• % ≥ 0 (% is positive semidefinite, i.e. it has nonnegative eigenvalues)

• Only for pure states: %2 = % (here % is a projector)
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Density operator for a pure qubit:

%pure =
∣∣ψ〉〈ψ∣∣ =

(
cos2 θ

2
1
2
e−iφ sin θ

1
2
eiφ sin θ sin2 θ

2

)
(11)

General mixed qubit state:

%mixed =

(
%00 %01
%∗01 %11

)
, (12)

with %00, %11 real. 3 real parameters describe % fully (remember: tr(%) = %00+%11 =
1).

2.2 The Bloch sphere
Decompose % into 1, σx, σy , σz as

% =
1

2
(1+ ~s · ~σ) , (13)

with the (real) Bloch vector

~s =

sxsy
sz

 (14)

and the vector of Pauli matrices

~σ =

σxσy
σz

 . (15)

Pauli matrices:

σx =

(
0 1
1 0

)
σy =

(
0 −i
i 0

)
σz =

(
1 0
0 −1

)
(16)

It follows

% =

(
1
2

+ 1
2
sz

1
2

(sx − isy)
1
2

(sx + isy)
1
2
− 1

2
sz

)
sx = 2Re%01

sy = −2Im%01

sz = %00 − %11 (17)
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Bloch ball for qubits

0

1

S

xs

zs
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Figure 1: Bloch sphere representation a qubit in a pure (green) and a mixed
(blue) state. The vector for pure states can take any point on the surface of the
sphere and is represented by two parameters (ϑ and ϕ). For mixed states the
Bloch vector ~s can take any point inside the sphere.

Bloch vector:

~s = |~s|

sinϑ cosφ
sinϑ sinφ

cosϑ

 , (18)

with |~s| = 1 for pure states, |~s| < 1 for mixed states.

• 3 parameters of ~s: ϑ, φ, |~s| determine %

• pure states on surface, mixed states in interior of Bloch ball

• orthogonal states have relative angle of 180◦

• every Bloch vector corresponds to physical state
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3 Composite systems and entanglement
Total Hilbert space: HA ⊗HB

The tensor product “⊗” is bilinear, i.e. ∀ |ψA〉, |φA〉 ∈ HA and ∀ |ψB〉 ∈ HB

and c ∈ C:

c (|ψA〉+ |φA〉)⊗ |ψB〉 (19)
= |ψA〉 ⊗ (c |ψB〉) + |φA〉 ⊗ (c |ψB〉).

Example for tensor product:

|ψA〉 ⊗ |ψB〉 =

(
α
β

)
A

⊗
(
γ
δ

)
B

=


αγ
αδ
βγ
βδ


AB

(20)

Notation: |0〉A ⊗ |0〉B ≡ |0〉A |0〉B ≡ |00〉AB ≡ |00〉
General pure state of 2 qubits:

|Ψ〉 = A00 |00〉+ A01 |01〉+ A10 |10〉+ A11 |11〉 ,
∑
ij

|Aij|2 = 1 (21)

3.1 Entanglement
Def. (separability): A pure state is called separable iff it is a product state, i.e.

|Ψ〉sep = |ψA〉 ⊗ |ψB〉 . (22)

A state which is not separable is called entangled.
Example for separable state: |Ψ〉 = 1√

2
(|00〉+ |01〉) = |0〉 ⊗ 1√

2
(|0〉+ |1〉)

Examples for entangled states:∣∣Φ±〉 :=
1√
2

(|00〉 ± |11〉)∣∣Ψ±〉 :=
1√
2

(|01〉 ± |10〉) , (23)

which are the Bell states (orthogonal entangled bases of 2×2 dim Hilbert space).
Given |ψ〉, is it separable or entangled?

Use “Schmidt decomposition”: dimHA = dA, dimHB = dB , HAB = HA ⊗ HB ,
any state |ψ〉 ∈ HAB can be written as

|ψ〉 =
r∑

k=1

ak |ek〉A ⊗ |fk〉B , (24)

with Schmidt coefficients ak real, positive,
∑

k a
2
k = 1 and 〈ei |ej〉A = δij =

〈fi |fj〉B , with Schmidt rank r, fulfills 1 ≤ r ≤ min(dA, dB).
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|ψ〉 is separable iff r = 1.
Proof: Singular value decomposition of A (see Eq. 21):

A =

(
A00 A01

A10 A11

)
= USV †. Here U , V are unitary matrices, where the columns

are the Schmidt vectors (U = (|e1〉 , |e2〉), V = (|f1〉 , |f2〉), and S is a diagonal
matrix containing the singular values which represent the Schmidt coefficients(
S =

(
a1 0
0 a2

))
.

Partial trace and the Schmidt rank

Partial trace: Given a density matrix %AB acting on a state of HAB = HA ⊗HB .
The partial trace over subsystem B leads to

%A = trB(%AB) =
∑
i

(1A ⊗ 〈iB|) %AB (1A ⊗ |iB〉) , (25)

where %A is the reduced density matrix of subsystem A.
Partial trace of |ψAB〉 in Schmidt decomposition:

%A = trB(%AB) =
∑
k

(1A ⊗ 〈fk|)

(
r∑
i=1

ai |ei〉 |fi〉

)(
r∑
i=1

a∗j 〈ej| 〈fj|

)
(1A ⊗ |fk〉)

=
∑
k

|ak|2
∣∣ek〉〈ek∣∣, (26)

the eigenvalues of %A are the squared Schmidt coeff. of |ψAB〉, i.e. “Schmidt-rank”
(%AB) = rank (%A) = rank (%B).
Example: A two qubit state: |ξ〉 = 1

2
(|00〉+ |01〉+ |10〉 − |11〉) with corresponding

density operator

%AB =
∣∣ξ〉〈ξ∣∣ =

1

4


1 1 1 −1
1 1 1 −1
1 1 1 −1
−1 −1 −1 1

 . (27)
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This leads to

%A =trB(%AB) =
∑
i

(1A ⊗ 〈iB|) %AB (1A ⊗ |iB〉)

= (1A ⊗ 〈0|) %AB (1A ⊗ |0〉) + (1A ⊗ 〈1|) %AB (1A ⊗ |1〉)

=

(
1 0 0 0
0 1 0 0

)
· 1

4


1 1 1 −1
1 1 1 −1
1 1 1 −1
−1 −1 −1 1

 ·


1 0
0 1
0 0
0 0

+

(
0 0 1 0
0 0 0 1

)
· 1

4


1 1 1 −1
1 1 1 −1
1 1 1 −1
−1 −1 −1 1

 ·


0 0
0 0
1 0
0 1


=

1

4

(
1 1
1 1

)
+

1

4

(
1 −1
−1 1

)
=

1

2

(
1 0
0 1

)
=

1

2
1. (28)

The reduced state of subsystem A is the maximally mixed state, i.e. the state |ξ〉
has Schmidt rank two and it is maximally entangled (see next section).

Quantifying pure state entanglement

Def. (von Neumann entropy): The von Neumann entropy of a quantum system with
density matrix % is

S(%) = −tr(% log %) . (29)

(base 2 for log)
Note: The logarithm of % is defined via the spectral decomposition:

log % =
∑
i

(log λi)
∣∣i〉〈i∣∣, (30)

where λi are the eigenvalues and |i〉 are the eigenvectors of %. Therefore

S(%) = −
∑
k

〈k|

(∑
i

λi log λi
∣∣i〉〈i∣∣) |k〉 = −

∑
k

λk log λk. (31)

The von Neumann entropy is quantum analogon of the classical Shannon entropy.

An entanglement measure for pure states:

E(|ψAB〉 = S(%A) = S(%B)

= −
∑
k

|ak|2 log |ak|2, (32)
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is the entropy of entanglement, with ak being the Schmidt coefficients.
Examples:

|ψAB〉 = |00〉 → %A =

(
1 0
0 0

)
→ S(%A) = 0 being separable,

|φ+〉 = 1√
2

(|00〉+ |11〉)→ %A = 1
2

(
1 0
0 1

)
→ S(%A) = 1 being maximal entangled.

4 Entanglement as a resource: Quantum teleportation

Teleportation (Oxford dictionary): "Teleportation is the apparently instantaneous
transportation of persons etc. across space by advanced technological means."

[C. Bennett et al. , Phys. Rev. Lett. 70, 1895 (1993)]
Alice and Bob share |ψ−〉AB (a singlet). Alice has an additional qubit in an
unknown state

|ϕ〉Z = α |0〉Z + β |1〉Z (33)

and wants to transfer it to Bob:

b b b b

|ϕ〉
Z

Bell measurement

Alice Bob

rotation
|ϕ〉

|ψ−〉
AB

send 2 classical bits

Write the total state |ψtotal〉 = |ϕ〉Z⊗ |ψ−〉AB in the Bell basis for system ZA:

|00〉 =
1√
2

[
∣∣φ+
〉

+
∣∣φ−〉],

|01〉 =
1√
2

[
∣∣ψ+

〉
+
∣∣ψ−〉],

|10〉 =
1√
2

[
∣∣ψ+

〉
−
∣∣ψ−〉],

|11〉 =
1√
2

[
∣∣φ+
〉
−
∣∣φ−〉]. (34)
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We have

|ψtotal〉 = |ϕ〉Z ⊗
∣∣ψ−〉

AB

= [α |0〉+ β |1〉]Z ⊗
1√
2

[|0〉A |1〉B − |1〉A |0〉B]

=
1

2

(
α[
∣∣φ+
〉

+
∣∣φ−〉]ZA |1〉B − α([

∣∣ψ+
〉

+
∣∣ψ−〉]ZA |0〉B

+β[
∣∣ψ+

〉
−
∣∣ψ−〉]ZA |1〉B − β[

∣∣φ+
〉
−
∣∣φ−〉]ZA |0〉B)

=
1

2

(∣∣φ+
〉
ZA

[α |1〉 − β |0〉]B +
∣∣φ−〉

ZA
[α |1〉+ β |0〉]B

+
∣∣ψ+

〉
ZA

[−α |0〉+ β |1〉]B +
∣∣ψ−〉

ZA
[−α |0〉 − β |1〉]B

)
.

(35)

The teleportation protocol:

1. Alice does a Bell measurement on her 2 qubits A and Z, e.g. by unitary
operations and single qubit measurements:

• H D (0, 1, 0, 1)
(|φ+〉 , |φ−〉 , |ψ+〉 , |ψ−〉)

D (0, 0, 1, 1)

The measurement operators are

{Pµ} =
{∣∣φ+

〉 〈
φ+
∣∣ , ∣∣φ−〉 〈φ−∣∣ , ∣∣ψ+

〉 〈
ψ+
∣∣ , ∣∣ψ−〉 〈ψ−∣∣} . (36)

The state after the measurement is given by∣∣ψtotal
µ

〉
=

Pµ ⊗ 1B
∣∣ψtotal

〉√
〈ψtotal|Pµ ⊗ 1B |ψtotal〉

. (37)

2. Alice tells Bob (classical channel) the outcome of her measurement.

3. Bob rotates his quantum state by a unitary operation (one of the Pauli
operators):

Alice’s outcome |φ+〉 |φ−〉 |ψ+〉 |ψ−〉
Bob’s rotation iσy σx −σz −1

Remember:

σx =

(
0 1
1 0

)
= |0〉 〈1|+ |1〉 〈0|

σy =

(
0 −i
i 0

)
= −i |0〉 〈1|+ i |1〉 〈0|

σz =

(
1 0
0 −1

)
= |0〉 〈0| − |1〉 〈1| . (38)
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Remarks:

• "Quantum teleportation" transports no matter, only information.

• The state transfer is not instantaneous, classical information has to be trans-
mitted from Alice to Bob.

• With classical information, Bob can reconstruct Alice’s state.

• Alice and Bob need |ψ−〉AB as a ressource.

Successful experiments in Innsbruck [D. Bouwmeester et al. , Nature 390, 575
(1997)] and Rome [D. Boschi et al. , Phys. Rev. Lett. 80, 1121 (1998)].

5 Superdense coding
Transmit two bits of information by transmitting only one qubit [C. Bennett, S.
Wiesner, Phys. Rev. Lett. 69, 2881 (1992)]. Again Alice and Bob share an
entangled state |ψ−〉AB.

The protocol:

1. Alice performs a local rotation, one out of the following four:

1A ⊗ 1B
∣∣ψ−〉

AB
=

∣∣ψ−〉
AB

(σx)A ⊗ 1B
∣∣ψ−〉

AB
= −

∣∣φ−〉
AB

(σy)A ⊗ 1B
∣∣ψ−〉

AB
= i

∣∣φ+
〉
AB

(σz)A ⊗ 1B
∣∣ψ−〉

AB
=

∣∣ψ+
〉
AB
. (39)

2. Alice sends her qubit to Bob.

3. Bob does a Bell measurement on both qubits and finds one of the four
outcomes (two bits of information were transmitted).


	Quantum Mechanics
	Qubits
	Composite systems and entanglement
	Entanglement as a resource: Quantum teleportation
	Superdense coding

