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Applications: Quantum computing, quantum simulators, ... 
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Examples:

carbon nanotube 

Micro- & nano-mechanical systems    
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gravity

inertial 
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light

.... while adding little noise !

Mechanical transducers    
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‣ delay lines, g-sensors
‣ signal processing, data storage
‣ ....    

( H. Craighead, Cornell )   

( D. Rugar, IBM )   

( “Milipede”, IBM )   

 
  

‣ detecting single molecules / proteins
‣ weak force measurements
‣ bio-sensors, ...   

precision measurement:  

daily life applications:    

Micro- & nano-mechanical systems    
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low temperature  (~ 20 mK )

Si nano-beam 
(K. Schwab, Caltech)  

hni = kBT

~�r high vibration frequency !

hni ⇡ 15 hni ⇡ 1 hni ⇡ 0

Carbon nanotubes 
(H. van der Zandt, Delft)  

SiN dilatation resonator 
(A. Cleland, Santa Barbara)  

Passive cooling    

Wednesday, July 23, 14



laser

vibrating mirror
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Laser cooling of macroscopic objects   
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... and 
many more!

(Vienna) (Yale)

optical …

(NIST/Jila)

microwave …

(Santa Barbara)

(MIT)

(Lausanne)

5 μm
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nano-photonic ...

(Caltech)

Optomechanical systems   
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Chan et al.,  
Nature 478, 89 (2011)

Teufel et al., 
Nature 471, 204 (2011)

O’Connell et al.,  
Nature 464, 697 (2010)

zero point 
oscillations

“Quantum” mechanical systems 

ground state 
cooling! 
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“microscopic” “macroscopic”

atoms,
ions, ... 

~1000 atoms
(M. Arndt, Vienna)

~10^12 atoms
“macroscopic”

• Corrections to QM, wavefunction collapse, ... 
• General relativity + quantum mechanics  ????

Massive objects ⇒ new physics ??    

“Quantum” mechanical systems 
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displacement

magnetic

electric

optical

“macroscopic” 
&

 “quantum”   

• Mechanical quantum transducers & interfaces 
• Q. information processing, mechanical sensing, ...

Macroscopic + quantum  ⇒ new applications !    

“Quantum” mechanical systems 
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“Probing macroscopic 
 superpositions”     

This talk ...    

Part I:      

“Electro-mechanical spin
 transducers”      

Part II:      

gold wire

spin qubits

magnetic
tip

D
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Mechanical resonators: basics
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N~10^12 atoms:

⇒  N independent vibrational modes ! 

⇒  Quantum system with N independent degrees of freedom ! 

We are interested in controlling only one of those modes !

Mechanical resonators
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(A ... beam cross section,    ... density, E ... Youngs modulus)

Elasticity theory (thin beam approximation): 

Mechanical resonators
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Solutions: 

mode frequencies: 

Mechanical resonators
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Solutions: 

boundary conditions (singly clamped beam): 

mode frequencies: 

Mechanical resonators
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Quantized mechanical resonators
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I) Lagrangian: 

Quantized mechanical resonators
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I) Lagrangian: 

Eigenmode expansion: 

Quantized mechanical resonators
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I) Lagrangian: 

Eigenmode expansion: 

(effective mass) 

Quantized mechanical resonators
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I) Lagrangian: 

independent harmonic 
oscillators !

II) Canonical quantization / Hamiltonian: 

Quantized mechanical resonators
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• quantized displacement of the tip: 

Quantized mechanical resonators
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• quantized displacement of the tip: 

• single mode approximation:   

Quantized mechanical resonators
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thermal phonon
reservoir

mechanical 
resonator

Coupling to other modes
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The (weak) coupling to all other modes can be taken into 
account by a master equation:

thermal phonon
reservoir

mechanical 
resonator

(mechanical damping rate) (thermal occupation number) 

Coupling to other modes
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Average phonon occupation number:

Thermalization & mechanical decoherence
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Average phonon occupation number:

⇒ mechanical decoherence rate:

When the mechanical mode is cooled to the ground state, it takes a 
time                            to populate it again with 1 phonon. 

Thermalization & mechanical decoherence
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Average phonon occupation number:

⇒ mechanical decoherence rate:

When the mechanical mode is cooled to the ground state, it takes a 
time                            to populate it again with 1 phonon. 

Thermalization & mechanical decoherence
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Resonators & spin qubits
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� 10µm

?

Quantum control of macroscopic objects
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“microscopic”

“macroscopic”

Idea:  

Quantum control of macroscopic objects
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island

lead

2e

resonator

2e

resonator

superconducting
loop

magnetic tip

spin qubit

mechanical
resonator

resonator

quantum dot /
defect center

‣ Electrostatic coupling to charge qubits.

‣ Magnetic (Lorentz force) coupling to flux qubits.

‣ Magnetic gradient coupling to spin qubits.

‣ Strain coupling to quantum dots / defect centers.

 see e.g.: P. Treutlein, C. Genes, K. Hammerer, M. Poggio, PR, arXiv:1210.4151

Mechanical resonators & solid state qubits
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http://arxiv.org/abs/1210.4151
http://arxiv.org/abs/1210.4151


„spin qubit“ 

„Spin qubit“: 
‣ long coherence (T2 ~10ms @ T=300 K)
‣ ESR (=microwave) control  

„Quantum optical qubit“: 
‣ state preparation (optical pumping)
‣ state detection (cycling transitions) 

„Solid state qubit“:
‣ stable / no trapping requirements
‣ localized < 50 nm 

⇒ “Nature’s own trapped ion”

NV centers in diamond
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spin qubit (NV center)

nano-resonator magnetic tip

MRFM (D. Rugar, IBM), BEC-resonator coupling (P. Treutlein), ...

Magnetic spin-resonator coupling
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spin qubit (NV center)

nano-resonator magnetic tip

magnetic coupling:

“Zeeman shift per 
vibrational quanta”

zero point 
motion

magnetic field 
gradient 

Magnetic spin-resonator coupling
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spin qubit (NV center)

magnetic coupling:

zero point 
motion

magnetic field 
gradient 

h < 50nm

“Zeeman shift per 
vibrational quanta”

Magnetic spin-resonator coupling
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spin qubit (NV center)

spin
dephasing

motional
dephasing

coherent
coupling 

Magnetic spin-resonator coupling
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spin qubit (NV center)

spin
dephasing

motional
dephasing

coherent
coupling 

⇒ strong coupling conditions !

Magnetic spin-resonator coupling
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motional quanta → spin excitation optical pumping 

‣ Cooling / state preparation:

PR, P. Cappellaro, Gurudev Dutt, L. Jiang, J. Maze, M. Lukin, Phys. Rev. B 79, 041302 (2009).   

Quantum control of mechanical motion

Wednesday, July 23, 14



spin superposition motional superposition 
map back and 

detect spin state 

motional quanta → spin excitation optical pumping 

‣ Cooling / state preparation:

‣ Quantum control & readout:

PR, P. Cappellaro, Gurudev Dutt, L. Jiang, J. Maze, M. Lukin, Phys. Rev. B 79, 041302 (2009).   

Quantum control of mechanical motion
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Probing macroscopic superpositions
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How can I measure a small magnetic field        ? 

Magnetometry
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How can I measure a small magnetic field        ? 

⇒ Ramsey interference measurement: 

i) apply pi/2  pulse
ii) wait 
iii) apply another pi/2 pulse
iv) measure spin populations

i) ii) iii) iv)

Magnetometry
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i) ii) iii)

i)

iv)

Magnetometry
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i) ii) iii)

i)

ii)

iv)

Magnetometry
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i) ii) iii)

iii)

i)

ii)

iv)

Magnetometry
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i) ii) iii) iv)

iv)

D

Magnetometry
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i) ii) iii) iv)

iv)

D

The long coherence times of NV are used for highly 
sensitive magnetometers with nanoscale resolution !

Magnetometry
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NV “quantum” magnetometer ?   

magnetic tip  

NV defect 
center  

D

⇒ Use Ramsey method to detect “quantum field”         ? 

Magnetometry for “quantum” signals ?
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Qubit-resonator 
coupling: 

D

detector 

two level system
(qubit) 

Setup  

• Frequency shift ~ to resonator displacement     
                                               ⟹    Ramsey / magnetometry !

mechanical 
resonator 
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Qubit-resonator 
coupling: 

D

detector 

two level system
(qubit) 

Setup  

• Frequency shift ~ to resonator displacement     
                                               ⟹    Ramsey / magnetometry !

• State dependent force:        ⟹   quantum backaction !

mechanical 
resonator 
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i) ii) iii) iv)
initial 

resonator 
state 

Quantum magnetometry  
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i) ii) iii)

i)

iv)
initial 

resonator 
state 

Quantum magnetometry  
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i) ii) iii)

i)

iv)

ii)

“geometric phase” 

Quantum magnetometry  
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i) ii) iii)

i)

iv)

ii)

“geometric phase” 

Quantum magnetometry  
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i) ii) iii)

i)

iv)

ii)

iii)

Quantum magnetometry  
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D

Quantum magnetometry  
i) ii) iii) iv)
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iv)

D

• Probabilities:

Quantum magnetometry  
i) ii) iii) iv)
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iv)

D

• Conditioned resonator state 
  after the measurement:

• Probabilities:

Quantum magnetometry  
i) ii) iii) iv)
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of the cantilever as a measuring device for the Cooper box
state; the correlations set up between the box and cantilever
states are completely undone and the two systems are no
longer entangled after an integral number of harmonic os-
cillation periods. This “recoherence” effect is discussed
in Ref. [7] for a system involving a cavity field coupled
to a movable mirror. Similar effects are also discussed in
Refs. [12,13].

The conditions for the quantum state control are as fol-
lows:

tj ,
h

4EC
ø h

EJ
ø tm , tcb

d ,

where tj denotes the jitter time of the pulse sequence gen-
erator and tcb

d denotes the decoherence time of the Cooper
box superposition states through processes other than due
to the cantilever and its environment. The first inequality
in the chain is necessary to resolve the rapid oscillations
with period h!4EC in Eq. (2), and thereby measure the
associated envelope function; without being able to posi-
tion the pulses with sufficient temporal accuracy, the oscil-
lations would be washed out giving a constant Pth"j2#$ %
1!2. The last inequality is necessary to observe the re-
coherences and the effects of the cantilever’s environment
(which we discuss below). The middle two inequalities
are not essential, their purpose being only to simplify the
theoretical analysis and hence the description of the quan-
tum dynamics. A 1 ps jitter time is achievable. Choos-
ing EC ! 150 meV gives h!4EC % 7 ps, and choosing
EJ ! 4 meV gives h!EJ % 1 ns. A fundamental flexural
frequency nm ! 50 MHz, giving a period tm ! 20 ns, is
readily achievable with micron-sized cantilevers [1,2].

The most serious practical constraint arises from the
decoherence of the Cooper box itself, which if it occurs
too fast will obscure the quantum dynamics of the can-
tilever. At present, decoherence times of only a few ns
have been achieved and an improvement of about an order
of magnitude would be required to implement our scheme.
However, recent work by Nakamura et al. [18] has demon-
strated that decoherence times of the box can be extended
by applying refocusing pulses. There is no fundamental
reason why the Cooper box decoherence time should be
limited to less than 20 ns and so considerable further im-
provements are to be expected.

In order that the Cooper-pair superposition state sepa-
rate the cantilever coherent states by more than their
width (the quantum position uncertainty), we require
that the coupling strength satisfies 4jlj!h̄vm . 1. A
Si cantilever with dimensions l "length$ 3 w "width$ 3
t "thickness$ ! 1.6 mm 3 0.1 mm 3 0.1 mm has a
fundamental flexural frequency nm % 50 MHz and
zero-point uncertainty Dxzp % 1.4 3 1023 Å. Assuming
a cantilever electrode-Cooper island gap d ! 0.1 mm
and gate capacitance Cm

g % 20 aF, the dimensionless gate
charge nm

g % 263V m
g . Substituting in these parameter

values and EC ! 150 meV, we have for the separation

condition Vm
g . 1.0 V. Such a voltage can be applied

across a 0.1 mm gap: it will deflect the cantilever by a
much smaller distance than the gap and is well below the
breakdown voltage.

We now turn to consider the effect of the cantilever’s
environment on the coupled Cooper box-cantilever dynam-
ics. We model the environment of the cantilever as a bath
of oscillators at a fixed temperature, T , each of which are
weakly coupled to the fundamental flexural mode. This
model is widely used for open systems and is equivalent
to treating the cantilever mode as a damped quantum os-
cillator [16,17], characterized by an energy damping rate
parameter, 2g ø vm,kBT!h̄ [19]. When the calculation
of Pth"j2#$ is repeated including the coupling of the can-
tilever to the bath oscillators we find

Pth"j2#$ !
1
2

&1 1 cos'4ECt!h̄ 1 4k2w"t$(e2G"t$) ,

(3)

where w"t$ is a slowly varying phase factor which depends
on the properties of the cantilever. The damping of the
coherent oscillations is given by

G"t$ !
4l2"2N̄ 1 1$
h̄2"v2

m 1 g2$

Ω
gt 2

2gvm

g2 1 v2
m

e2gt sin"vmt$

1

µ
g2 2 v2

m

g2 1 v2
m

∂

3 'e2gt cos"vmt$ 2 1(
æ

.

Again we define the envelope of Pth"j2#$ by setting the
total phase in the square brackets of Eq. (3) to zero.

The energy damping rate in the model, 2g, can be es-
timated empirically by measuring the quality factor of the
cantilever, Q, since 2g ! vm!Q. Figure 3 shows the en-
velope of Pth"j2#$ when the coupling of the cantilever to
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τ/τm
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FIG. 3. Envelope of Pth"j2#$, including the cantilever’s envi-
ronment, as a function of wait time for Q ! 1000. The figures in
the legend correspond to the values of the quantity 4k2"2N̄ 1 1$.
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A. Armour, M. Blencowe, K. Schwab, PRL (2002); 
W. Marshall, C. Simon, R. Penrose, D. Bouwmeester, PRL (2003);  .... 

Collapse and revivals ...    

coherent 
rephasing
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of the cantilever as a measuring device for the Cooper box
state; the correlations set up between the box and cantilever
states are completely undone and the two systems are no
longer entangled after an integral number of harmonic os-
cillation periods. This “recoherence” effect is discussed
in Ref. [7] for a system involving a cavity field coupled
to a movable mirror. Similar effects are also discussed in
Refs. [12,13].

The conditions for the quantum state control are as fol-
lows:

tj ,
h

4EC
ø h

EJ
ø tm , tcb

d ,

where tj denotes the jitter time of the pulse sequence gen-
erator and tcb

d denotes the decoherence time of the Cooper
box superposition states through processes other than due
to the cantilever and its environment. The first inequality
in the chain is necessary to resolve the rapid oscillations
with period h!4EC in Eq. (2), and thereby measure the
associated envelope function; without being able to posi-
tion the pulses with sufficient temporal accuracy, the oscil-
lations would be washed out giving a constant Pth"j2#$ %
1!2. The last inequality is necessary to observe the re-
coherences and the effects of the cantilever’s environment
(which we discuss below). The middle two inequalities
are not essential, their purpose being only to simplify the
theoretical analysis and hence the description of the quan-
tum dynamics. A 1 ps jitter time is achievable. Choos-
ing EC ! 150 meV gives h!4EC % 7 ps, and choosing
EJ ! 4 meV gives h!EJ % 1 ns. A fundamental flexural
frequency nm ! 50 MHz, giving a period tm ! 20 ns, is
readily achievable with micron-sized cantilevers [1,2].

The most serious practical constraint arises from the
decoherence of the Cooper box itself, which if it occurs
too fast will obscure the quantum dynamics of the can-
tilever. At present, decoherence times of only a few ns
have been achieved and an improvement of about an order
of magnitude would be required to implement our scheme.
However, recent work by Nakamura et al. [18] has demon-
strated that decoherence times of the box can be extended
by applying refocusing pulses. There is no fundamental
reason why the Cooper box decoherence time should be
limited to less than 20 ns and so considerable further im-
provements are to be expected.

In order that the Cooper-pair superposition state sepa-
rate the cantilever coherent states by more than their
width (the quantum position uncertainty), we require
that the coupling strength satisfies 4jlj!h̄vm . 1. A
Si cantilever with dimensions l "length$ 3 w "width$ 3
t "thickness$ ! 1.6 mm 3 0.1 mm 3 0.1 mm has a
fundamental flexural frequency nm % 50 MHz and
zero-point uncertainty Dxzp % 1.4 3 1023 Å. Assuming
a cantilever electrode-Cooper island gap d ! 0.1 mm
and gate capacitance Cm

g % 20 aF, the dimensionless gate
charge nm

g % 263V m
g . Substituting in these parameter

values and EC ! 150 meV, we have for the separation

condition Vm
g . 1.0 V. Such a voltage can be applied

across a 0.1 mm gap: it will deflect the cantilever by a
much smaller distance than the gap and is well below the
breakdown voltage.

We now turn to consider the effect of the cantilever’s
environment on the coupled Cooper box-cantilever dynam-
ics. We model the environment of the cantilever as a bath
of oscillators at a fixed temperature, T , each of which are
weakly coupled to the fundamental flexural mode. This
model is widely used for open systems and is equivalent
to treating the cantilever mode as a damped quantum os-
cillator [16,17], characterized by an energy damping rate
parameter, 2g ø vm,kBT!h̄ [19]. When the calculation
of Pth"j2#$ is repeated including the coupling of the can-
tilever to the bath oscillators we find

Pth"j2#$ !
1
2

&1 1 cos'4ECt!h̄ 1 4k2w"t$(e2G"t$) ,

(3)

where w"t$ is a slowly varying phase factor which depends
on the properties of the cantilever. The damping of the
coherent oscillations is given by

G"t$ !
4l2"2N̄ 1 1$
h̄2"v2

m 1 g2$

Ω
gt 2

2gvm

g2 1 v2
m

e2gt sin"vmt$

1

µ
g2 2 v2

m

g2 1 v2
m

∂

3 'e2gt cos"vmt$ 2 1(
æ

.

Again we define the envelope of Pth"j2#$ by setting the
total phase in the square brackets of Eq. (3) to zero.

The energy damping rate in the model, 2g, can be es-
timated empirically by measuring the quality factor of the
cantilever, Q, since 2g ! vm!Q. Figure 3 shows the en-
velope of Pth"j2#$ when the coupling of the cantilever to
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FIG. 3. Envelope of Pth"j2#$, including the cantilever’s envi-
ronment, as a function of wait time for Q ! 1000. The figures in
the legend correspond to the values of the quantity 4k2"2N̄ 1 1$.
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of the cantilever as a measuring device for the Cooper box
state; the correlations set up between the box and cantilever
states are completely undone and the two systems are no
longer entangled after an integral number of harmonic os-
cillation periods. This “recoherence” effect is discussed
in Ref. [7] for a system involving a cavity field coupled
to a movable mirror. Similar effects are also discussed in
Refs. [12,13].

The conditions for the quantum state control are as fol-
lows:

tj ,
h

4EC
ø h

EJ
ø tm , tcb

d ,

where tj denotes the jitter time of the pulse sequence gen-
erator and tcb

d denotes the decoherence time of the Cooper
box superposition states through processes other than due
to the cantilever and its environment. The first inequality
in the chain is necessary to resolve the rapid oscillations
with period h!4EC in Eq. (2), and thereby measure the
associated envelope function; without being able to posi-
tion the pulses with sufficient temporal accuracy, the oscil-
lations would be washed out giving a constant Pth"j2#$ %
1!2. The last inequality is necessary to observe the re-
coherences and the effects of the cantilever’s environment
(which we discuss below). The middle two inequalities
are not essential, their purpose being only to simplify the
theoretical analysis and hence the description of the quan-
tum dynamics. A 1 ps jitter time is achievable. Choos-
ing EC ! 150 meV gives h!4EC % 7 ps, and choosing
EJ ! 4 meV gives h!EJ % 1 ns. A fundamental flexural
frequency nm ! 50 MHz, giving a period tm ! 20 ns, is
readily achievable with micron-sized cantilevers [1,2].

The most serious practical constraint arises from the
decoherence of the Cooper box itself, which if it occurs
too fast will obscure the quantum dynamics of the can-
tilever. At present, decoherence times of only a few ns
have been achieved and an improvement of about an order
of magnitude would be required to implement our scheme.
However, recent work by Nakamura et al. [18] has demon-
strated that decoherence times of the box can be extended
by applying refocusing pulses. There is no fundamental
reason why the Cooper box decoherence time should be
limited to less than 20 ns and so considerable further im-
provements are to be expected.

In order that the Cooper-pair superposition state sepa-
rate the cantilever coherent states by more than their
width (the quantum position uncertainty), we require
that the coupling strength satisfies 4jlj!h̄vm . 1. A
Si cantilever with dimensions l "length$ 3 w "width$ 3
t "thickness$ ! 1.6 mm 3 0.1 mm 3 0.1 mm has a
fundamental flexural frequency nm % 50 MHz and
zero-point uncertainty Dxzp % 1.4 3 1023 Å. Assuming
a cantilever electrode-Cooper island gap d ! 0.1 mm
and gate capacitance Cm

g % 20 aF, the dimensionless gate
charge nm

g % 263V m
g . Substituting in these parameter

values and EC ! 150 meV, we have for the separation

condition Vm
g . 1.0 V. Such a voltage can be applied

across a 0.1 mm gap: it will deflect the cantilever by a
much smaller distance than the gap and is well below the
breakdown voltage.

We now turn to consider the effect of the cantilever’s
environment on the coupled Cooper box-cantilever dynam-
ics. We model the environment of the cantilever as a bath
of oscillators at a fixed temperature, T , each of which are
weakly coupled to the fundamental flexural mode. This
model is widely used for open systems and is equivalent
to treating the cantilever mode as a damped quantum os-
cillator [16,17], characterized by an energy damping rate
parameter, 2g ø vm,kBT!h̄ [19]. When the calculation
of Pth"j2#$ is repeated including the coupling of the can-
tilever to the bath oscillators we find

Pth"j2#$ !
1
2

&1 1 cos'4ECt!h̄ 1 4k2w"t$(e2G"t$) ,

(3)

where w"t$ is a slowly varying phase factor which depends
on the properties of the cantilever. The damping of the
coherent oscillations is given by

G"t$ !
4l2"2N̄ 1 1$
h̄2"v2

m 1 g2$

Ω
gt 2

2gvm

g2 1 v2
m

e2gt sin"vmt$

1

µ
g2 2 v2

m

g2 1 v2
m

∂

3 'e2gt cos"vmt$ 2 1(
æ

.

Again we define the envelope of Pth"j2#$ by setting the
total phase in the square brackets of Eq. (3) to zero.

The energy damping rate in the model, 2g, can be es-
timated empirically by measuring the quality factor of the
cantilever, Q, since 2g ! vm!Q. Figure 3 shows the en-
velope of Pth"j2#$ when the coupling of the cantilever to
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FIG. 3. Envelope of Pth"j2#$, including the cantilever’s envi-
ronment, as a function of wait time for Q ! 1000. The figures in
the legend correspond to the values of the quantity 4k2"2N̄ 1 1$.
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[1] S. Kolkowitz et al, Science (2012); S. Bennett et al. NJP (2012) 

driven, thermal 
(T=300 K) resonator ! 

Collapse and revivals ...    

coherent 
rephasing
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• Conditioned on the outcome of the first measurement the resonator is
   projected into one of the superposition states 

• Use correlations between the first and second measurement to probe
   quantum superpositions over a time      .

Idea: Correlations !   
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Ramsey correlation measurements    
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Interference

Ramsey correlation measurements    
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Interference

Ramsey correlation measurements    

geometric phase:
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Wigner function of the 
conditioned state 

correlations between the 
two measurements 

Ramsey correlation measurements    
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Wigner function of the 
conditioned state 

correlations between the 
two measurements 
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0

decoherence 
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0
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Ramsey correlation measurements    
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⇒ Correlations                                       directly probe 
    survival/decay of macroscopic superposition states !
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⇒ During the waiting time the resonator is decoupled from the qubit !
    (high-Q resonators, levitated objects!!)

Ramsey correlation measurements    
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⇒ Correlations                                       directly probe 
    survival/decay of macroscopic superposition states !
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Do we really see 
quantum features ?

⇒ During the waiting time the resonator is decoupled from the qubit !
    (high-Q resonators, levitated objects!!)

Ramsey correlation measurements    
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⇒ For a “macro-realistic” [1] model these correlations are bound by the 
    (Wigner type) Leggett-Garg inequality:

Leggett-Garg inequality    

[1] Leggett, J. Phys. Cond. Matter 14, R415 (2002); Emary, Lambert, Nori, arXiv:1304.5133
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Result:

Violation of the LG inequality     
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Maximal & robust  
violation of the LGI for 
large displacements: 
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Interference

Maximal & robust  
violation of the LGI for 
large displacements: 
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(random) trajectory, but with a 
specific value at each time

Qubit probing a 
classical field:

Quantum vs. classical correlations    

qubit reset
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(random) trajectory, but with a 
specific value at each time

Qubit probing a 
classical field:

Quantum vs. classical correlations    

No violation !

qubit reset
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Mechanical quantum transducers
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localized
electronic (nuclear) spins

“weak”
magnetic dipole 

interactions

“storage times” 

(T=300 K !!!) 
✓environment

Solid state spin systems     
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localized
electronic (nuclear) spins

“weak”
magnetic dipole 

interactions ✓
 gate operations

(d < 10 nm) ?
other spins

environment
“storage times” 

(T=300 K !!!) 

Jelezko, Wrachtrup, Nature Physics (2010)   

Solid state spin systems     
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magnetic
dipole

magnetic
tipdisplacement

Mechanical quantum transducer     
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magnetic
dipole

displacement

+
+

+

+

+
+

+

+electric dipole !

add charge !

Mechanical quantum transducer     
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spin qubit 1

+
+

+

+

+
+

+

+
strong

electrostatic
coupling ! 

+
+

+

+

+
+

+

+
spin qubit 2

long-range spin-spin interactions !

Mechanical quantum transducer     
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d � 1 µm
l � 5 µm

Wiring up mechanical resonators     
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+

wire 
-
-
-
-
-
-

-
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-
-
-

+ + + + Cw � �0d

10 nm 

~100 µm !!

direct, magnetic:

indirect:

Wiring up mechanical resonators     
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+
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+
+
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+
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U

+
+
+
+
+
+

U

+
+
+
+
+
+

Coupled resonator chain:  

collective phonon modes

Wiring up mechanical resonators     
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spin-phonon
coupling

individual
spin control

collective 
phonon modes

Electro-mechanical quantum bus     
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trapped ion 
quantum computer [1] 

mechanical resonators   ⇒   “artificial, massive ions” 

Electro-mechanical quantum bus     
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Phonon-mediated spin-spin interactions     
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free 
phonons

Polaron transformation 
( ≡ displaced oscillator basis ) 

( phonon frequencies,
 mode functions )

see also proposals by C. Wunderlich, I. Cirac, etc. for trapped ion QC

Phonon-mediated spin-spin interactions     
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Phonon-mediated spin-spin interactions     
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+�

displaced oscillator basis:

Phonon-mediated spin-spin interactions     
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displaced oscillator basis:

Phonon-mediated spin-spin interactions     
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��

+�

��

+�

effective 
spin-spin 

interactions

�
displaced oscillator basis:

Phonon-mediated spin-spin interactions     
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effective spin model:

full model:

Hspin =
X

ij

Mij�
i
z�

j
z

Mij

H =
X

n

⇤na
†
nan +

1

2

X

i

�i(a
†
i + ai)⇥

i
z

+
X

ij

gij(a
†
i + ai)(a

†
j + aj)

Wiring up spins ...     
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Summary & conclusions
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2004  today  

“quantum regime”

� 10µm

�r � 1 MHz

• passive / active cooling

New (macroscopic) 
quantum degree of 

freedom !

“Quantum” mechanical systems    
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• Ramsey correlation measurements:

• Violation of LGI with macroscopic systems: 

• modular variables 
• contextuality 
• Bell inequalities (?), ...  
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LG violation

D

Probing QM at the macroscopic scale    

A. Asadian, C. Brukner, PR, PRL 112, 190402 (2014)
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Mechanical quantum transducers  

displacement

magnetic

electric

optical

“macroscopic” 
&

 “quantum”   

‣ Coherent interface between electric, magnetic 
   & optical quantum system !    
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• Qubit-light-interfaces.
K. Stannigel et al, PRL (2010)
A. H. Safavi-Naeini, O. Painter, NJP (2011)

PR et al,  Nature Physic (2010)

•  Electro-mechanical 
   spin-spin interactions.

Mechanical quantum transducers  

optical 
cavity

membrane 
capacitor

superconducting 
qubit

gold wire

spin qubits

magnetic
tip

Experiments: Caltech, NIST/JILA, Copenhagen, Santa Barbara, ...
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