

Coupling, controlling, and processing non-transversal photons with a single atom

8th International Summer School of the SFB/TRR21 "Control of Quantum Correlations in Tailored Matter" Heinrich-Fabri-Haus, Blaubeuren, Germany July 27–29, 2015

Arno Rauschenbeutel Vienna Center for Quantum Science and Technology, Atominstitut, TU Wien, Austria

Photonic Quantum Applications

Photons

- Easy state manipulation and detection.
- Weakly coupled to environment.
 - → Ideal for (quantum) communication and information processing.

But: Photons do not interact with each other \rightarrow no quantum gates !

-MM- mm-

Solution: Atom-Photon Quantum Interfaces

• Photons coupled to atoms \rightarrow provide photon-photon interaction

Optical Microresonators

An optical microresonator can be characterized by its mode volume V_{mode} and its quality factor Q:

$$V_{\text{mode}} = \iiint |f(\vec{r})|^2 d^3r$$

f(\vec{r}): spatial mode function
$$|f_{\text{max}}(\vec{r})|^2 = 1$$

 $Q = \omega_{opt}\tau$ $\omega_{opt}: \text{ optical frequency}$ $\tau: \text{ photon lifetime}$

Optical Microresonators

For a given input power P_{in} , the intracavity intensity scales as

$$I_{\rm cav} \propto P_{\rm in} \times \frac{Q}{V_{\rm mode}}$$

⇒ make Q/V_{mode} as large as possible in order to enhance coupling of light and matter.

 Light-matter coupling in whisperinggallery-mode resonators

- The role of non-transversal polarization
- Switching light with a single atom
- Nonlinear π phase shift for single fiber-guided photons

Whispering Gallery Modes

Rasmussen © 1996 &0V¹Ray 3.0

Whispering Gallery Mode Microresonators

"Equatorial" whispering gallery modes (WGMs) in fused silica microresonators:

V. Lefèvre, private commun.

D. K. Armani et al., Nature 421, 925 (2003)

✓ ultra-high Q factor, small mode volume
 × limited tunability, restricted access to light field

III The "Bottle Microresonator"

Alternative approach: WGMs in a bulge on an optical fiber:

Our prediction in 2005:

- ultra-high Q factor, small mode volume
- strain tunable, advantageous mode geometry

III The "Bottle Microresonator"

Alternative approach: WGMs in a bulge on an optical fiber:

Our prediction in 2005:

- ultra-high Q factor, small mode volume
- strain tunable, advantageous mode geometry

WGMs in a Bottle Microresonator

Axial confinement due to effective harmonic potential.

Resulting intensity distribution \leftrightarrow eigenfunctions of 1d-h.o.

Direct observation not possible \Rightarrow dope resonator with Er-ions.

PRL 103, 053901 (2009)

Characterizing Bottle Modes

Resonances show up as dips in transmitted power.

Characterizing Bottle Modes

- Linewidth: 2.1 ± 0.1 MHz @ λ =850 nm
- $\Rightarrow Q_0 \approx 3.3 \times 10^8$
- $\Rightarrow Q_0 / V_{mode} \approx 6 \times 10^4 (\lambda/n)^{-3} \Rightarrow$ strong coupling regime

CQED – The Jaynes-Cummings Model

Atom-resonator interaction:

$$H_{JC} = \boldsymbol{g} \left(a^{\dagger} \boldsymbol{\sigma}^{-} + a \boldsymbol{\sigma}^{+} \right)$$

 a^{\dagger} ... photon creation operator σ^{+} ... atom excitation operator

- g ... atom-cavity coupling
- $\kappa \ ... \ cavity decay rate$
- γ ... atomic decay rate

Vacuum-Rabi splitting indicates strong coupling

Strong coupling regime

CQED with WGM resonators

WGM resonators as ring resonators

- 2 counter-propagating optical modes: *a*, *b*
- tunable fiber-resonator coupling: κ

Atom-resonator interaction:

$$H_{JC} = g \left(a^{\dagger} \sigma^{-} + a \sigma^{+} \right) + g \left(b^{\dagger} \sigma^{-} + b \sigma^{+} \right)$$

CQED with WGM resonators

Atom-resonator interaction:

Always possible to choose, e.g., $g_D = 0$: uncoupled standing wave Only 50% of the light interacts with the atom

The CQED Experiment

The CQED Experiment

Atomic cloud T = 5 μ K 10⁷ atoms

Coupling single atoms to the bottle resonator

Spectroscopy of atom-resonator system

Theory and experiment disagree qualitatively

Coupling single atoms to the bottle resonator

Spectroscopy of atom-resonator system

Theory and experiment disagree qualitatively

• Light-matter coupling in whisperinggallery-mode resonators

- The role of non-transversal polarization
- Switching light with a single atom
- Nonlinear π phase shift for single fiber-guided photons

• Effect of longitudinal polarization:

→ Strong longitudinal field component:

$$E_{\text{long}} = i\sqrt{1 - n^{-2}}E_{\text{trans}}$$

= 0.7 (for glass)

- 90° out of phase
- → almost pefectly circularly polarized (overlap ~ 97%)

PRL 110, 213604 (2013)

- Effect of longitudinal polarization: **CCW** CW
- Counterporpagating modes nearly orthogonally polarized
 - WGM resonator *≠* ring resonator
 - No destructive interference
 - No uncoupled standing wave

PRL 110, 213604 (2013)

- Effect of longitudinal polarization: **CCW** CW
- Counterporpagating modes nearly orthogonally polarized
 - WGM resonator ≠ ring resonator
 - No destructive interference
 - No uncoupled standing wave
- Atom-resonator coupling:

- - excited state

Upon detection, atom is pumped into extremal m_F state \rightarrow effective two-level system

Ideal CQED system: 2-level atom + single resonator mode

PRL 110, 213604 (2013)

Experimental verification

TM polarization: (strong longitudinal field)

TE polarization (no longitudinal field)

⇒ probe polarization qualitatively changes atom-light interaction ⇒ 3 orthogonal polarizations (TM: σ^+ , σ^- , TE: π) PRL 110, 213604 (2013)

Experimental verification

Good agreement between theory and experiment PRL 110, 213604 (2013)

Time evolution

Spectrum at t = 0

On resonance transmission (with atom)

• Light-matter coupling in whisperinggallery-mode resonators

- The role of non-transversal polarization
- Switching light with a single atom
- Nonlinear π phase shift for single fiber-guided photons

Switching light with a single atom

Add-drop configuration

- Efficient transfer of light
- Resonator frequency controls light path
- Idea: Presence of atom switches light
- Uses effect of non-transversal polarization

Characterization of the switch

Efficiency vs. fiber distance from resonator

- 90% efficiency without atom
- Stable atom-light coupling

Optimal working point

- High raw fidelity
- 80% probability to recover incoming photons
- Fast cavity regime $\kappa > g^2/\kappa > \gamma$
- Prospects: Fidelity > 90 % within reach

PRL 111, 193601(2013)

• Light-matter coupling in whisperinggallery-mode resonators

- The role of non-transversal polarization
- Switching light with a single atom
- Nonlinear π phase shift for single fiber-guided photons

Single atom polarization switch

Ingredients:

Birefringence

 \rightarrow only H-polarized light is resonant with bottle resonator

Overcoupled regime

 \rightarrow H-component is in- and outcoupled and acquires π phase

Single atom polarization switch

Ingredients:

- Birefringence

 → only H-polarized light is
 resonant with bottle resonator
- Overcoupled regime

 → H-component is in- and outcoupled and acquires π phase
- Strong coupling

→ single atom blocks incoupling of H-component

$$|H\rangle + |V\rangle \rightarrow \begin{cases} -|H\rangle + |V\rangle, & \text{without atom} \\ |H\rangle + |V\rangle, & \text{with atom} \end{cases}$$

related work by M. Lukin and G. Rempe

Ingredients:

- Birefringence

 → only H-polarized light is
 resonant with bottle resonator
- Overcoupled regime

 → H-component is in- and outcoupled and acquires π phase
- Strong coupling

 → single atom blocks incoupling of

 H-component
- Nonlinearity of J.-C.-Hamiltonian

 → photon number-dependent intracavity loss due to saturation of atom

Photon number dependent phase shift

К

2 photons arrive simultaneously: \rightarrow lower absorption per photon

→ photon-number dependent phase shift

Effective photon – photon interaction ("collisional" phase shift)

• Chose input polarization along H+V-direction:

$$|\psi_{\text{initial}}\rangle = \frac{1}{2\sqrt{2}} (a_H^+ a_H^+ + 2a_H^+ a_V^+ + a_V^+ a_V^+)|0\rangle^{H}$$

$$|\psi_{\text{final}}\rangle = \frac{1}{2\sqrt{2}} \left(-a_H^+ a_H^+ + 2a_H^+ a_V^+ + a_V^+ a_V^+ \right) |0\rangle$$

$$=\frac{1}{2\sqrt{2}}\left[a_{V}^{+}(a_{H}^{+}+a_{V}^{+})-a_{H}^{+}(a_{H}^{+}-a_{V}^{+})\right]|0\rangle$$

⁸⁵Rb atom

• Final state $|\psi\rangle_{\text{final}}$ is maximally entangled.

• Chose input polarization along H+V-direction:

$$|\psi_{\text{initial}}\rangle = \frac{1}{2\sqrt{2}} (a_H^+ a_H^+ + 2a_H^+ a_V^+ + a_V^+ a_V^+)|0\rangle^{H}$$

$$|\psi_{\text{final}}\rangle = \frac{1}{2\sqrt{2}} \bigoplus_{H} a_{H}^{+} + 2a_{H}^{+}a_{V}^{+} + a_{V}^{+}a_{V}^{+})|0\rangle$$

$$=\frac{1}{2\sqrt{2}}\left[a_{V}^{+}(a_{H}^{+}+a_{V}^{+})-a_{H}^{+}(a_{H}^{+}-a_{V}^{+})\right]|0\rangle$$

⁸⁵Rb atom

• Final state $|\psi\rangle_{\text{final}}$ is maximally entangled.

State reconstruction

 Record coincidences for all possible combinations of three polarization bases (H, V, +45°, -45°, R, L).

Nat. Photon. 8, 965 (2014)

State reconstruction

 Record coincidences for all possible combinations of three polarization bases (H, V, +45°, -45°, R, L).

Experimental results

two photon density matrix:

(simple) theory

Nat. Photon. 8, 965 (2014)

Experimental results

two photon density matrix:

nonlinear phase shift of π

 \rightarrow Entanglement of initially independent photons (C=0.28)

maximally strong photon-photon interaction

Nat. Photon. 8, 965 (2014)

- Longitudinal polarization component fundamentally alters light-matter interaction.
- Effect makes WGM resonators ideally suited for CQED experiments.
- Strong coupling between single atoms and bottle microresonator demonstrated and understood.
- Fiber-optical switch operated by a single atom.
- Nonlinear π phase shift leads to entanglement of initially independent incident photons.

<u>Students:</u> Bernhard Albrecht, Benjamin Fränkel, Rudolf Mitsch, David Papencordt, Jan Petersen, Daniel Reitz, Michael Scheucher, Stefan Walser, Daniel Weiss, Elisa Will

Group Technician: Thomas Hoinkes

Postdocs & Senior Scientist: Christoph Clausen, Pham Le Kien, Sarah Skoff, Clément Sayrin, Philipp Schneeweiß, Jürgen Volz

Studienstiftung des deutschen Volkes

Thank you for your attention!

