

Coupling, controlling, and processing non-transversal photons with a single atom

8th International Summer School of the SFB/TRR21 "Control of Quantum Correlations in Tailored Matter" Heinrich-Fabri-Haus, Blaubeuren, Germany July 27–29, 2015

Arno Rauschenbeutel Vienna Center for Quantum Science and Technology, Atominstitut, TU Wien, Austria

Photonic Quantum Applications

Photons

- Easy state manipulation and detection.
- Weakly coupled to environment.
	- Ideal for (quantum) communication and information processing.

But: Photons do not interact with each other \rightarrow no quantum gates !

 $M/m \sim M/m$

Solution: Atom-Photon Quantum Interfaces

• Photons coupled to atoms \rightarrow provide photon-photon interaction

Optical Microresonators

An optical microresonator can be characterized by its mode volume V_{mode} and its quality factor Q:

$$
V_{\text{mode}} = \iiint |f(\vec{r})|^2 d^3r
$$

$$
f(\vec{r})
$$
: spatial mode function

$$
|f_{\text{max}}(\vec{r})|^2 = 1
$$

 $Q = \omega_{\text{opt}}\tau$
 ω_{opt} : optical frequency
 τ : photon lifetime

Optical Microresonators

For a given input power P_{in} , the intracavity intensity scales as

$$
I_{\rm cav} \propto P_{\rm in} \times \frac{Q}{V_{\rm mode}}
$$

 \Rightarrow make Q/V_{mode} as large as possible in order to enhance coupling of light and matter.

• Light-matter coupling in whisperinggallery-mode resonators

- The role of non-transversal polarization
- Switching light with a single atom
- Nonlinear π phase shift for single fiber-guided photons

Whispering Gallery Modes

ssen © 1996 001/Rgy 3.0 Ib Ram

Whispering Gallery Mode Microresonators

"Equatorial" whispering gallery modes (WGMs) in fused silica microresonators:

V. Lefèvre, private commun. D. K. Armani et al., Nature 421, 925 (2003)

 \checkmark ultra-high Q factor, small mode volume limited tunability, restricted access to light field

The "Bottle Microresonator"

Alternative approach: WGMs in a bulge on an optical fiber:

Our prediction in 2005:

- ultra-high Q factor, small mode volume
- strain tunable, advantageous mode geometry

The "Bottle Microresonator"

Alternative approach: WGMs in a bulge on an optical fiber:

Our prediction in 2005:

- ultra-high Q factor, small mode volume
- strain tunable, advantageous mode geometry

WGMs in a Bottle Microresonator

Axial confinement due to effective harmonic potential.

Resulting intensity distribution \leftrightarrow eigenfunctions of 1d-h.o.

Observing "Bottle Modes" TU_{WIEN}

Direct observation not possible \Rightarrow dope resonator with Er-ions.

Observing "Bottle Modes" WIEI

PRL **103**, 053901 (2009)

$\left[\prod\limits_{\mathsf{W}}\prod\limits_{\mathsf{E}\mid\mathsf{N}}\right]$ **Observing "Bottle Modes"**

PRL **103**, 053901 (2009)

$\left[\prod\limits_{\mathsf{W}}\prod\limits_{\mathsf{E}}\mathsf{W}\right]$ **Observing "Bottle Modes"**

PRL **103**, 053901 (2009)

Observing "Bottle Modes" WIEI

PRL **103**, 053901 (2009)

Observing "Bottle Modes" WIEI

PRL **103**, 053901 (2009)

$\left[\prod\limits_{\mathsf{W}}\prod\limits_{\mathsf{E}\mid\mathsf{N}}\right]$ **Observing "Bottle Modes"**

PRL **103**, 053901 (2009)

Characterizing Bottle Modes \prod_{WIEN}

Resonances show up as dips in transmitted power.

Characterizing Bottle Modes

- Linewidth: 2.1 ± 0.1 MHz @ $\lambda = 850$ nm
- \Rightarrow $Q_0 \approx 3.3 \times 10^8$
- $\bullet \Rightarrow Q_0/V_{\text{mode}} \approx 6 \times 10^4 (\lambda/n)^{-3} \Rightarrow$ strong coupling regime

CQED – The Jaynes-Cummings Model

Atom-resonator interaction:

$$
H_{JC} = g\left(\right. a^{\dagger}\sigma^{-} + a\sigma^{+}\right)
$$

a† ... photon creation operator σ^+ ... atom excitation operator

- *g* ... atom-cavity coupling
- κ ... cavity decay rate
- ... atomic decay rate

Vacuum-Rabi splitting indicates strong coupling

Strong coupling regime

$$
\boxed{g > \kappa, \gamma}
$$

CQED with WGM resonators

WGM resonators as ring resonators

- **2 counter-propagating optical modes:** *a***,** *b*
- tunable fiber-resonator coupling: κ

Atom-resonator interaction:

$$
H_{JC} = g (a^{\dagger} \sigma^- + a \sigma^+) + g (b^{\dagger} \sigma^- + b \sigma^+)
$$

CQED with WGM resonators

Atom-resonator interaction:

 $H_{JC} = g(a^{\dagger}\sigma^{-} + a\sigma^{+}) + g(b^{\dagger}\sigma^{-} + b\sigma^{+})$ Standing wave description: $C = (a + b)/\sqrt{2}$ equivalent description $D = (a - b)/\sqrt{2}$ *H*_{JC} =*g***_C** ($C^{\dagger}\sigma$ [−] + $C\sigma$ ⁺) + *g***_D**</sub> ($D^{\dagger}\sigma$ [−] + $D\sigma$ ⁺)

Always possible to choose, e.g., $g_D=0$: uncoupled standing wave Only 50% of the light interacts with the atom

TU_{WIEN} **The CQED Experiment**

TU
_{WIEN} **The CQED Experiment**

Atomic cloud $T = 5 \mu K$ 107 atoms

Coupling single atoms to the bottle resonator

• Spectroscopy of atom-resonator system

Theory and experiment disagree qualitatively

Coupling single atoms to the bottle resonator

• Spectroscopy of atom-resonator system

Theory and experiment disagree qualitatively

• Light-matter coupling in whisperinggallery-mode resonators

- The role of non-transversal polarization
- Switching light with a single atom
- Nonlinear π phase shift for single fiber-guided photons

TM polarization in the resonator TU_{WIEN}

Effect of longitudinal polarization:

→ Strong longitudinal field component:

$$
E_{\text{long}} = i \sqrt{1 - n^{-2}} E_{\text{trans}}
$$

= 0.7 (for glass)

- 90° out of phase
- ➔ **almost pefectly circularly polarized (overlap ~ 97%)**

TM polarization in the resonator $\left[\prod\limits_{w \mid E} \bigcup\limits_{\kappa} \right]$

PRL 110, 213604 (2013)

TM polarization in the resonator

- Effect of longitudinal polarization: **CCW CW**
- Counterporpagating modes nearly orthogonally polarized
	- WGM resonator \neq ring resonator
	- No destructive interference
	- No uncoupled standing wave

PRL 110, 213604 (2013)

TM polarization in the resonator

- Counterporpagating modes nearly orthogonally polarized
	- WGM resonator \neq ring resonator
	- No destructive interference
	- No uncoupled standing wave
- Atom-resonator coupling:

excited state ground state **cw**

Upon detection, atom is pumped into extremal m_F state \rightarrow effective two-level system

Ideal CQED system: 2-level atom + single resonator mode

PRL 110, 213604 (2013)

Experimental verification

TM polarization: (strong longitudinal field)

TE polarization (no longitudinal field)

 (\mathbf{x})

probe polarization qualitatively changes atom-light interaction 3 orthogonal polarizations (TM: σ^+ , σ^- , TE: π) PRL 110, 213604 (2013)

 1.0

TU **Experimental verification**

Good agreement between theory and experiment _{PRL 110, 213604 (2013)}

Spectrum at $t = 0$

On resonance transmission (with atom)

Spectrum at large *t* 1.0 fiber transmission
 $\begin{array}{ccc}\n0.6 & 0.6 \\
0.6 & 0.8\n\end{array}$ 0.2 0.0 -60 -20 20 40 60 -40 0 $\Delta_{\sf fr}$ (MHz) probedetection municipal transmission
 $\frac{1}{2}$
 $\frac{1}{2}$
 $\frac{1}{2}$
 $\frac{1}{2}$ $0.8\frac{N}{N}$ 0.5 1.0 1.5 $\overline{2.0}$ $\overline{2.5}$ time (μs)

 1.0

 0.8

 0.2

• Light-matter coupling in whisperinggallery-mode resonators

- The role of non-transversal polarization
- Switching light with a single atom
- Nonlinear π phase shift for single fiber-guided photons

Switching light with a single atom

Add-drop configuration

- Efficient transfer of light
- Resonator frequency controls light path
- Idea: Presence of atom switches light
- Uses effect of non-transversal polarization

Characterization of the switch

Efficiency vs. fiber distance from resonator

- 90% efficiency without atom
- Stable atom-light coupling

Optimal working point

- High raw fidelity
- 80% probability to recover incoming photons
- Fast cavity regime $\kappa > g^2/\kappa > \gamma$
- Prospects: Fidelity > 90 % within reach

• Light-matter coupling in whisperinggallery-mode resonators

- The role of non-transversal polarization
- Switching light with a single atom
- Nonlinear π phase shift for single fiber-guided photons

Single atom polarization switch

Ingredients:

• **Birefringence**

 \rightarrow only H-polarized light is resonant with bottle resonator

• **Overcoupled regime**

 \rightarrow H-component is in- and outcoupled and acquires π phase

Single atom polarization switch

Ingredients:

- **Birefringence** \rightarrow only H-polarized light is resonant with bottle resonator
- **Overcoupled regime** \rightarrow H-component is in- and outcoupled and acquires π phase
- **Strong coupling**

 \rightarrow single atom blocks incoupling of H-component

$$
|H\rangle + |V\rangle \rightarrow \begin{cases} -|H\rangle + |V\rangle, & \text{without atom} \\ |H\rangle + |V\rangle, & \text{with atom} \end{cases}
$$

related work by M. Lukin and G. Rempe

Single photon nonlinear phase shift

Ingredients:

- **Birefringence** \rightarrow only H-polarized light is resonant with bottle resonator
- **Overcoupled regime** → H-component is in- and outcoupled and acquires π phase
- **Strong coupling** \rightarrow single atom blocks incoupling of H-component
- **Nonlinearity of J.-C.-Hamiltonian** \rightarrow photon number-dependent intracavity loss due to saturation of atom

Single photon nonlinear phase shift

Photon number dependent phase shift

κ

• 2 photons arrive simultaneously: *a*

Γ*a*

1 photon:

 $\hat{a}^{\dagger}_H |0\rangle$

- \rightarrow lower absorption per photon
- \rightarrow photon-number dependent phase shift

2 photons:
 $\hat{a}^{\dagger}_H \hat{a}^{\dagger}_H |0\rangle \rightarrow -\hat{a}^{\dagger}_H \hat{a}^{\dagger}_H |0\rangle$

 \rightarrow $\hat{a}^{\dagger}_H |0\rangle$

Effective photon – photon interaction ("collisional" phase shift)

Single photon nonlinear phase shift TU_{WIEN}

• **Chose input polarization along H+V-direction:**

$$
|\psi_{\text{initial}}\rangle = \frac{1}{2\sqrt{2}}(a_H^+ a_H^+ + 2a_H^+ a_V^+ + a_V^+ a_V^+)|0\rangle^{\frac{1}{H}}
$$

$$
|\psi_{\text{final}}\rangle = \frac{1}{2\sqrt{2}}(-a_H^+ a_H^+ + 2a_H^+ a_V^+ + a_V^+ a_V^+)|0\rangle
$$

$$
= \frac{1}{2\sqrt{2}} \left[a_V^+(a_H^+ + a_V^+) - a_H^+(a_H^+ - a_V^+) \right] |0\rangle
$$

85Rb atom

• Final state $|\psi\rangle_{final}$ is maximally entangled.

Single photon nonlinear phase shift TU_{WIEN}

• **Chose input polarization along H+V-direction:**

$$
|\psi_{\text{initial}}\rangle = \frac{1}{2\sqrt{2}} (a_H^+ a_H^+ + 2a_H^+ a_V^+ + a_V^+ a_V^+)|0\rangle^2
$$

$$
|\psi_{\text{final}}\rangle = \frac{1}{2\sqrt{2}} \mathbf{Q} \mathbf{u}_{H}^{+} a_{H}^{+} + 2a_{H}^{+} a_{V}^{+} + a_{V}^{+} a_{V}^{+})|0\rangle
$$

$$
= \frac{1}{2\sqrt{2}} \left[a_V^+(a_H^+ + a_V^+) - a_H^+(a_H^+ - a_V^+) \right] |0\rangle
$$

85Rb atom

• Final state $|\psi\rangle_{final}$ is maximally entangled.

State reconstruction

• **Record coincidences for all possible combinations of three polarization bases (H, V, +45° , -45°, R, L).**

Nat. Photon. 8, 965 (2014)

State reconstruction

• **Record coincidences for all possible combinations of three polarization bases (H, V, +45° , -45°, R, L).**

Experimental results $\prod_{\mathsf{W}}\prod_{\mathsf{E}\,\mathsf{N}}$

two photon density matrix:

(simple) theory

Nat. Photon. 8, 965 (2014)

Experimental results

two photon density matrix:

nonlinear phase shift of π

 \rightarrow Entanglement of initially independent photons (C=0.28)

maximally strong photon-photon interaction

Nat. Photon. 8, 965 (2014)

- Longitudinal polarization component fundamentally alters light–matter interaction.
- Effect makes WGM resonators ideally suited for CQED experiments.
- Strong coupling between single atoms and bottle microresonator demonstrated and understood.
- Fiber-optical switch operated by a single atom.
- Nonlinear π phase shift leads to entanglement of initially independent incident photons.

Students: Bernhard Albrecht, Benjamin Fränkel, Rudolf Mitsch, David Papencordt, Jan Petersen, Daniel Reitz, Michael Scheucher, Stefan Walser, Daniel Weiss, Elisa Will

Group Technician: Thomas Hoinkes

Postdocs & Senior Scientist: Christoph Clausen, Pham Le Kien, Sarah Skoff, Clément Sayrin, Philipp Schneeweiß, Jürgen Volz

:

Studienstiftung des deutschen Volkes

\prod_{WIEN} **Thank you for your attention!**

