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Photonic Quantum Applications 
Photons  

• Easy state manipulation and detection. 
• Weakly coupled to environment. 
     →    Ideal for (quantum) communication and 
 information processing. 

But: Photons do not interact with each other  → no quantum gates ! 

Solution:  Atom-Photon Quantum Interfaces  
• Photons coupled to atoms → provide photon-photon interaction 



Optical Microresonators 

An optical microresonator can be characterized by 
its mode volume 𝑉𝑉mode and its quality factor 𝑄𝑄: 

τ 

𝑉𝑉mode 



Optical Microresonators 

𝑃𝑃in 

𝐼𝐼cav 

For a given input power 𝑃𝑃in, the intracavity intensity 
scales as  

𝐼𝐼cav ∝ 𝑃𝑃in ×
𝑄𝑄

𝑉𝑉mode
 

⇒ make 𝑄𝑄/𝑉𝑉mode as large as possible in order to  
    enhance coupling of light and matter. 



 
• Light-matter coupling in whispering- 

gallery-mode resonators  
 
• The role of non-transversal polarization 

 
• Switching light with a single atom 

 
• Nonlinear 𝜋𝜋 phase shift for single fiber-guided photons 

 
 

Overview 



Whispering Gallery Modes 



Whispering Gallery Mode Microresonators 
 
“Equatorial” whispering gallery modes (WGMs) in 
fused silica microresonators: 
 
 
 
 
 
 
 
 
 ultra-high Q factor, small mode volume 
 limited tunability, restricted access to light field 

V. Lefèvre, private commun. D. K. Armani et al., Nature 421, 925 (2003) 



The “Bottle Microresonator” 

Alternative approach: WGMs in a bulge on an optical fiber: 
 
 
 
 
 
 
 
 
 
 
Our prediction in 2005: 
• ultra-high Q factor, small mode volume 
• strain tunable, advantageous mode geometry 



Thanks to Peter Würtz 
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WGMs in a Bottle Microresonator 

Axial confinement due to effective harmonic potential. 

Resulting intensity distribution ↔ eigenfunctions of 1d-h.o. 



Observing “Bottle Modes” 

Direct observation not possible ⇒ dope resonator with Er-ions. 
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Green fluorescence through 2 photon up-conversion process. 
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Characterizing Bottle Modes 

Resonances show up as dips in transmitted power. 



Characterizing Bottle Modes 

• Linewidth: 2.1 ± 0.1 MHz @ λ=850 nm 
•  ⇒ Q0 ≈ 3.3×108 

•  ⇒ Q0 /Vmode ≈ 6×104(λ/n)-3 ⇒ strong coupling regime 



CQED – The Jaynes-Cummings Model 

• Single resonator mode a 
• Two level atom 

κ 

a 

Atom-resonator interaction: 

HJC =g ( a†𝜎𝜎− + a𝜎𝜎+ ) 

g 
γ 

a 

excited state 

ground state 

g 

nanofiber 

g  ... atom-cavity coupling 
κ  ...  cavity decay rate 
γ   ... atomic decay rate 

a† ... photon creation operator  
𝜎𝜎+ ... atom excitation operator  

Strong coupling regime 

g > κ, γ   

Vacuum-Rabi splitting 
indicates strong coupling 

g g 

empty 
cavity 

cavity+ 
atom 



• 2 counter-propagating optical 
modes: a, b 

• tunable fiber-resonator coupling: κ 
 

CQED with WGM resonators 

κ 

a 

b 

HJC =g ( a†𝜎𝜎− + a𝜎𝜎+ ) + g ( b†𝜎𝜎− + b𝜎𝜎+ ) 

Atom-resonator interaction: 

HJC =g ( a†𝜎𝜎− + a𝜎𝜎+ ) 

a 

excited state 

ground state 

g 

nanofiber 

WGM resonators as ring resonators 



CQED with WGM resonators 

κ 

a 

b 

HJC =g ( a†𝜎𝜎− + a𝜎𝜎+ ) + g ( b†𝜎𝜎− + b𝜎𝜎+ ) 

Atom-resonator interaction: 

HJC =g ( a†𝜎𝜎− + a𝜎𝜎+ ) 

HJC =gC ( C†𝜎𝜎− + C𝜎𝜎+ ) + gD ( D†𝜎𝜎− + D𝜎𝜎+ ) 

Standing wave description: 

C D 

equivalent 
description 

Always possible to choose, e.g.,  gD=0: uncoupled standing wave 

excited state 

ground state 

g 

nanofiber 0.25 

empty 
resonator 

resonator 
+ atom 

2gC 

Only 50% of the light interacts with the atom 

 



The CQED Experiment 



The CQED Experiment 

Cold 85Rb atoms are 
delivered into the 
resonator field by an 
atomic fountain 

MOT 

Atomic cloud 
T = 5 μK 

107 atoms 
 



Coupling single atoms to the bottle resonator 
• Detecting 85Rb atoms from atomic fountain 

 Transmission increase heralds atom transit 
 

empty 
resonator 

resonator 
+ atom 

Theory  

• Spectroscopy of atom-resonator system 
 

empty 
resonator 

resonator 
+ atom 

Experiment 

Theory and experiment disagree qualitatively 

0.25 

0.7 
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TM polarization in the resonator 

• Effect of longitudinal polarization: 

ccw 

• 90° out of phase 
➔ almost pefectly circularly polarized 
     (overlap ~ 97%)  

➔ Strong longitudinal field component: 
 

= 0.7 (for glass) 

PRL 110, 213604 (2013) 
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TM polarization in the resonator 

• Effect of longitudinal polarization: 
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• Counterporpagating modes 
nearly orthogonally polarized 
• WGM resonator ≠ ring resonator    
• No destructive interference   
• No uncoupled standing wave 

cw 

 



TM polarization in the resonator 

• Effect of longitudinal polarization: 

ccw 

PRL 110, 213604 (2013) 

• Counterporpagating modes 
nearly orthogonally polarized 
• WGM resonator ≠ ring resonator    
• No destructive interference   
• No uncoupled standing wave 

Upon detection, atom is pumped 
into extremal mF state 
→ effective two-level system 

• Atom-resonator coupling: 
excited state 

ground state 
ccw cw 

Ideal CQED system: 2-level atom + single resonator mode 

cw 

 



Experimental verification 
TM polarization: 
(strong longitudinal field) 

TE polarization 
(no longitudinal field) 

 

probe polarization qualitatively changes atom-light interaction 
3 orthogonal polarizations (TM: σ+, σ−, TE: π) PRL 110, 213604 (2013) 

    



Experimental verification 

detection 

probe 

detection probe 

TM polarization TE polarization 

Good agreement between theory and experiment PRL 110, 213604 (2013) 

   



Time evolution 

detection probe 

Spectrum at  t = 0 

On resonance transmission 
(with atom) 

pumping with cavity field 
polarization correlated with  
propagation direction 

Spectrum at large t 

detection 

probe 
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Switching light with a single atom 

Add-drop configuration 

• Efficient transfer of light 
• Resonator frequency controls 

light path 
• Idea: Presence of atom 

switches light 
• Uses effect of non-transversal 

polarization 

drop 

bus 
input 

incoming light 



drop fiber 

bus fiber 

Characterization of the switch 

photon recovery  
probability 

Fidelity 
(including loss) 

Efficiency vs. fiber 
distance from resonator 
• 90% efficiency without atom 
• Stable atom-light coupling 

Optimal working point 
• High raw fidelity 
• 80% probability to recover 

incoming photons 
• Fast cavity regime κ > g2/κ > γ 
• Prospects: Fidelity > 90 % 

within reach 

PRL 111, 193601(2013) 
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Single atom polarization switch 

Ingredients: 
• Birefringence  

→ only H-polarized light is 
resonant with bottle resonator 

• Overcoupled regime 
→ H-component is in- and out-
coupled and acquires 𝜋𝜋 phase 



Single atom polarization switch 

𝐻𝐻 + 𝑉𝑉 → �− 𝐻𝐻 + 𝑉𝑉 , without atom
𝐻𝐻 + 𝑉𝑉 , with atom  

Ingredients: 
• Birefringence  

→ only H-polarized light is 
resonant with bottle resonator 

• Overcoupled regime 
→ H-component is in- and out-
coupled and acquires 𝜋𝜋 phase 

• Strong coupling  
→ single atom blocks incoupling of 
H-component 

related work by M. Lukin and G. Rempe 



Single photon nonlinear phase shift 

Ingredients: 
• Birefringence  

→ only H-polarized light is 
resonant with bottle resonator 

• Overcoupled regime 
→ H-component is in- and out-
coupled and acquires 𝜋𝜋 phase 

• Strong coupling  
→ single atom blocks incoupling of 
H-component 

• Nonlinearity of J.-C.-Hamiltonian 
→ photon number-dependent intra-
cavity loss due to saturation of 
atom 



atom-fiber coupling (κ/Γa) 
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Photon number dependent phase shift 

ph
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e 
sh

ift
 

• 2 photons arrive simultaneously: 
 
→ photon-number dependent  
     phase shift 

κ 

a 

Γa 

→ lower absorption per photon 

Effective photon – photon interaction („collisional“ phase shift) 

1 photon: 

2 photons: 

Single photon nonlinear phase shift 



Single photon nonlinear phase shift 

• Chose input polarization along 
H+V-direction: 

|𝜓𝜓initial〉 =
1

2 2
(𝑎𝑎𝐻𝐻+𝑎𝑎𝐻𝐻+ + 2𝑎𝑎𝐻𝐻+𝑎𝑎𝑉𝑉+ + 𝑎𝑎𝑉𝑉+𝑎𝑎𝑉𝑉+)|0〉 

|𝜓𝜓final〉 =
1

2 2
(−𝑎𝑎𝐻𝐻+𝑎𝑎𝐻𝐻+ + 2𝑎𝑎𝐻𝐻+𝑎𝑎𝑉𝑉+ + 𝑎𝑎𝑉𝑉+𝑎𝑎𝑉𝑉+)|0〉 

=
1

2 2
[𝑎𝑎𝑉𝑉+ 𝑎𝑎𝐻𝐻+ + 𝑎𝑎𝑉𝑉+ − 𝑎𝑎𝐻𝐻+ 𝑎𝑎𝐻𝐻+ − 𝑎𝑎𝑉𝑉+ ]|0〉 

• Final state 𝝍𝝍 𝐟𝐟𝐟𝐟𝐟𝐟𝐟𝐟𝐟𝐟 is maximally entangled. 
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State reconstruction 
• Record coincidences for all possible combinations of three polarization 

bases (H, V, +45°, -45°, R, L). 

Nat. Photon. 8, 965 (2014) 



State reconstruction 
• Record coincidences for all possible combinations of three polarization 

bases (H, V, +45°, -45°, R, L). 



Experimental results 

(simple) theory 

two photon density matrix: 

measured 

Nat. Photon. 8, 965 (2014) 



(simple) theory 

Experimental results 

nonlinear phase shift of π  
→  Entanglement of initially independent photons (C=0.28) 

maximally strong photon-photon interaction 

two photon density matrix: 

measured 

nonlinear phase-shift 

concurrence 

Nat. Photon. 8, 965 (2014) 



Summary 

• Longitudinal polarization component 
fundamentally alters light–matter interaction. 

• Effect makes WGM resonators ideally suited for 
CQED experiments. 

• Strong coupling between single atoms and bottle 
microresonator demonstrated and understood. 

• Fiber-optical switch operated by a single atom. 

• Nonlinear 𝜋𝜋 phase shift leads to entanglement of 
initially independent incident photons. 
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Thank you for your attention! 
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