

Chiral interaction of light and matter in confined geometries

8th International Summer School of the SFB/TRR21 "Control of Quantum Correlations in Tailored Matter" Heinrich-Fabri-Haus, Blaubeuren, Germany July 27–29, 2015

Arno Rauschenbeutel Vienna Center for Quantum Science and Technology, Atominstitut, TU Wien, Austria

Introduction – Hybrid (Quantum) Systems

Introduction – Atom–Light Interfaces

- Optical photons
 - Propagate at speed of light.
 - Easy state manipulation and detection.
 - Weakly coupled to the environment.
 - \rightarrow Ideal carriers for transmitting (quantum) information.
- Atoms
 - Identical quantum systems (~10²¹ Rb atoms per \$).
 - Well-known level structure and optical transitions.
 - Laser control of internal & external degrees of freedom.
 - Excellent ground state coherence properties.
 - Nonlinear response and controlled interactions.
 - \rightarrow Ideal for storing and processing quantum information.

www.

Introduction – Atom–Light Interfaces

- Challenge:
 - Interaction cross section between atoms and light is small.
 - → Strong transversal confinement of light.

Christensen et al., PRA **78**, 033429 (2008)

Bajcsy et al., PRL **102**, 203902 (2009)

Kohnen et al., Nat. Phot. **5**, 35 (2010)

Introduction – Atom–Light Interfaces

- Challenge:
 - Interaction cross section between atoms •
 - → Strong transversal confinement of

Introduction – Non-transversal Polarization

- Non-transversal polarization
 - Electric field oscillating in direction of propagation

 $\vec{\nabla}\cdot\vec{E}=0$

Introduction – Non-transversal Polarization

- Non-transversal polarization
 - Electric field oscillating in direction of propagation

- Origin of longitudinal field
 - Non-zero transversal divergence
 - E. g., if transversal E-field points along the field gradient
 - → Longitudinal field component

 $\underbrace{\partial_x E_x + \partial_y E_y}_{-} + \underbrace{\partial_z E_z}_{2\pi}$ $\approx i \frac{2\pi}{E_z}$ $\vec{\nabla}_{trans} \cdot \vec{E}_{trans}$

Introduction – Non-transversal Polarization

- Non-transversal polarization
 - Electric field oscillating in direction of propagation

- Origin of longitudinal field
 - Non-zero transversal divergence
 - E. g., if transversal E-field points along the field gradient
 - → Longitudinal field component

 $E_{z} = i \frac{\lambda}{2\pi} \left(\vec{\nabla}_{trans} \cdot \vec{E}_{trans} \right)$ oscillates 90° out

Significant longitudinal field if gradient is significant on wavelength scale

of phase!!

Introduction – Spin-Orbit Interaction of Light

• Linearly polarized propagating focused Gaussian mode

 \Rightarrow Local ellipticity (or spin) depends on transverse position

Introduction – Spin-Orbit Interaction of Light

• Linearly polarized propagating focused Gaussian mode

 \Rightarrow Local ellipticity (or spin) changes sign with direction of propagation

Introduction – Spontaneous Emission

In free space, dipolar emission exhibits cylindrical symmetry w. r. t. quantization axis (z-axis) and is mirror-symmetric w. r. t. z=0 plane:

 \Rightarrow Emission in any given direction is the same as for opposite direction

Emitters coupled to a nanophotonic waveguide

Symmetric:

Asymmetric:

•

•

Emitters coupled to a nanophotonic waveguide

Symmetric:

• Asymmetric:

•

- Directional spontaneous emission in different physical situations.
- Surface-plasmons:

Rodríguez-Fortuño et al., Science **340**, 328 (2013)

J. Lin, et al., Science **340**, 331 (2013)

• Directional spontaneous emission in different physical situations.

• Dielectric interface & 2d waveguides

Neugebauer et al., Nano Lett. **14**, 2546 (2014)

• Photonic crystal waveguides:

Young et al., arXiv:1406.0714

Söllner et al., arXiv:1406.4295

le Feber et al., arXiv:1406.7741

• Dielectric 1d waveguides:

Rodríguez-Fortuño et al., ACS Photonics (2014) DOI: 10.1021/ph500084b

Guided modes in optical nanofibers

Directional emission of a gold nanoparticle

Directional atom-waveguide interface

Nonreciprocal nanophotonic waveguide

Nanofibers as the Waist of a Tapered Fiber

Efficient coupling of light into and out of the nanofiber

- Adiabatic mode transformation \Rightarrow up to 99% transmission
- Withstands >100 mW of transmitted optical power in vacuum

Fabrication of Tapered Optical Fibers

• Tapering standard optical fibers by flame pulling:

Tapered Fibers of Predetermined Shape

Normalized Propagation Constant

- Quasi linearly polarized HE₁₁ mode.
- Parameters: a = 250 nm, $n_1 = 1.46$ (silica), $n_2 = 1$ (vacuum / air), and $\lambda = 852$ nm.

- Quasi linearly polarized HE₁₁ mode.
- Parameters: $n_1 = 1.46$ (silica), $n_2 = 1$ (vacuum / air), and $\lambda = 852$ nm.

e.

$$\frac{\left|\vec{E}(x,y=0)\right|^{2}}{\left|\vec{E}(x=a,y=0)\right|^{2}_{a=0.23\lambda}}$$
),

$$\frac{1}{\left|\vec{E}(x=a,y=0)\right|^{2}_{a=0.23\lambda}}$$

$$\frac{1}{\left|\vec{E}(x=a,y=0)\right|^{2}_{a=0.23\lambda}}$$

$$\frac{1}{\left|\vec{E}(x=a,y=0)\right|^{2}_{a=0.23\lambda}}$$

$$\frac{1}{\left|\vec{E}(x=a,y=0)\right|^{2}_{a=0.23\lambda}}$$

HE₁₁ Mode: Effective Mode Area

- Quasi circularly polarized HE₁₁ mode.
- Parameters: a = 250 nm, $n_1 = 1.46$ (silica), $n_2 = 1$ (vacuum / air), and $\lambda = 852$ nm.

- Quasi linearly polarized HE₁₁ mode.
- Parameters: a = 250 nm, $n_1 = 1.46$ (silica), $n_2 = 1$ (vacuum / air), and $\lambda = 852$ nm.

- Quasi linearly polarized HE₁₁ mode.
- Parameters: a = 250 nm, $n_1 = 1.46$ (silica), $n_2 = 1$ (vacuum / air), and $\lambda = 852$ nm.

- Quasi linearly polarized HE₁₁ mode.
- Parameters: a = 250 nm $n_1 = 1.46 \text{ (silica)}$ $n_2 = 1 \text{ (vacuum / air)}$ $\lambda = 852 \text{ nm}$

HE₁₁ Mode: Polarization Properties

Recipe

- Locate emitter on one side of the nanofiber
- Optical excitation...

... emission of a σ^+ -photon

Guided modes in optical nanofibers

Directional emission of a gold nanoparticle

Directional atom-waveguide interface

Nonreciprocal nanophotonic waveguide

Sample Preparation

Touch nanofiber with drop of suspension of gold nanoparticles

• Presence of single gold nanoparticle detected via absorption spectroscopy

Sample Preparation

Touch nanofiber with drop of suspension of gold nanoparticles

- Presence of single gold nanoparticle detected via absorption spectroscopy
- Presence and diameter of particle checked with SEM after experiment

Sample Preparation

Touch nanofiber with drop of suspension of gold nanoparticles

- Presence of single gold nanoparticle detected via absorption spectroscopy
- Presence and diameter of particle checked with SEM after experiment

Experimental Set-Up

System: Gold nanoparticle (Ø=90 nm) on silica nanofiber (Ø=315 nm)

- Polarization of excitation light (σ^+ , σ^- , linear) set by waveplate
- Azimuthal position of gold particle set by rotating nanofiber about axis

Petersen et al., Science 346, 67 (2014)

Petersen et al., Science **346**, 67 (2014)

Calculate directionality from above data:

$$D = \frac{c_{+} - c_{-}}{c_{+} + c_{-}}$$

Petersen et al., Science 346, 67 (2014)

• Maximum directionality:

$$D = 0.88$$
 $D = 0.95$

• Corresponding ratio of left/right photon fluxes:

 $16 \div 1 \qquad \qquad 40 \div 1$

- **Overview**
 - Guided modes in optical nanofibers

Directional emission of a gold nanoparticle

Directional atom-waveguide interface

Nonreciprocal nanophotonic waveguide

Dipole Traps

Induced dipole moment: $\vec{d} = \alpha \vec{E}$

$$\begin{split} U_{dip} &= -\frac{1}{2} \langle \vec{d} \cdot \vec{E} \rangle \\ \Gamma_{sc} &= \langle \dot{\vec{d}} \cdot \vec{E} \rangle / \hbar \omega \end{split}$$

α: Polarizability

 $\propto -\text{Re}(\alpha) \propto -I/\Delta$

 \propto Im (α) \propto I / Δ^2

Radial confinement

- Evanescent field exerts a dipole force on the atoms
- "Blue light" is more tightly bound to the nanofiber than "red light"

Fam Le Kien et al., PRA 70, 063403 (2004)

Axial confinement

Two counter-propagating reddetuned beams

> standing wave 500 nm between trapping sites

Azimuthal confinement

Linear polarizations

breaking of the rotational symmetry

Axial confinement

Two counter-propagating reddetuned beams

standing wave 500 nm between trapping sites

Azimuthal confinement

Linear polarizations

breaking of the rotational symmetry

Two arrays of trapping sites

- Nanofiber diameter: 500 nm
- At most one atom per trapping site
- Filling factor: ~ 0.5

Trap parameters

- Atom-surface distance: 230 nm
- Trap frequencies: (200, 315, 140) kHz
- Atoms are localized to a volume $\ll \lambda^3$

More nanofiber-based atom traps (past, present, and future): Caltech, Niels Bohr Institute, JQI / University of Maryland, LKB Paris, Waseda University, OIST Japan, Univ. of Arizona, Swansea University, Univ. of Queensland, Univ. of Auckland... E. Vetsch et al., IEEE J of Quant Elec. 18, 1763 (2012)

Experimental Set-Up

Nanofiber with cesium atoms on one side

R. Mitsch et al., Nat. Commun. 5, 5713 (2014)

Cesium D2-Line Level Scheme

R. Mitsch et al., Nat. Commun. 5, 5713 (2014)

Directional Atom-Waveguide Interface

Quantum state-controlled directional spontaneous emission

R. Mitsch et al., Nat. Commun. 5, 5713 (2014)

Guided modes in optical nanofibers

Directional emission of a gold nanoparticle

Directional atom-waveguide interface

Nonreciprocal nanophotonic waveguide

Experimental Set-Up

Nanofiber with spin-polarized atoms on one side

x

C. Sayrin et al., arXiv:1502.01549 (2015)

Nonreciprocal nanophotonic waveguide

Nanofiber with spin-polarized atoms on one side

- Forward (backward) transmission of 78 % (13 %).
- Isolation of 8 dB.
- Data agrees with prediction for $\langle N \rangle = 27$ atoms.

C. Sayrin et al., arXiv:1502.01549 (2015)

- Guided modes in optical nanofibers
 - Non-transversal polarization
 - Local polarization ⇔ propagation direction
- Directional emission of a gold nanoparticle
 - Waveguide interface for single particle
 - Directionality of up to 95% demonstrated
- Directional atom-waveguide interface
 - Atomic state determines directionality
 - Ratio of ~ 10:1
- Nonreciprocal nanophotonic waveguide
 - Forward transmission of 78 % and isolation of 8 dB for 27 atoms

Optical signal processing and routing of light

Nanophotonic sensors for detecting and identifying scatterers with intrinsic polarization asymmetry

Revisit "one-dimensional atom" \Rightarrow qualitatively new effects

Collective emission creates pure entangled state

Stannigel et al., New. J. Phys. 14, 063014 (2012)

<u>Students:</u> Bernhard Albrecht, Benjamin Fränkel, Jakob Hinney, Rudolf Mitsch, David Papencordt, Jan Petersen, Adarsh Prasad, Daniel Reitz, Michael Scheucher, Stefan Walser, Daniel Weiss, Elisa Will

Group Technician: Thomas Hoinkes

Postdocs & Senior Scientist: Christoph Clausen, Pham Le Kien, Sarah Skoff, Clément Sayrin, Philipp Schneeweiß, Jürgen Volz

<u>Students:</u> Bernhard Albrecht, Benjamin Fränkel, Jakob Hinney, Rudolf Mitsch, David Papencordt, Jan Petersen, Adarsh Prasad, Daniel Reitz, Michael Scheucher, Stefan Walser, Daniel Weiss, Elisa Will

Group Technician: Thomas Hoinkes

Postdocs & Senior Scientist: Christoph Clausen, Pham Le Kien, Sarah Skoff, Clément Sayrin, Philipp Schneeweiß, Jürgen Volz

FUIF : NEXT lite 💵 🔵 CoQuS

Thank you for your attention!

