

Antenna-coupled Photoemission from Single Emitters and Single Electrons

Palash Bharadwaj Photonics Laboratory ETH Zurich

Yesterday…

$$
\rho_{\mathbf{n}}(r_0,\omega) = \frac{6\omega n^2}{\pi c^2} \left\{ n_p^{\mathsf{T}} \operatorname{Im} \left[\overleftrightarrow{\mathbf{G}}(r_0, r_0; \omega) \right] n_p \right\} \text{ LDOS}
$$
\n
$$
P \propto |\mathbf{p}_{\text{ind}}|^2 \propto \frac{|\alpha|^2}{d^6} \text{ source}
$$
\n
$$
\text{source}
$$
\n
$$
\text{antenna}
$$

Optical Antennas…

- Modulate LDOS on sub-λ length scale
- Can boost decay rates of quantum emitters
- Can direct the emission of quantum emitters

Menu for Today

Plasmonics with Single Emitters and Electrons

Optical antennas Scanning probe optical microscopy Single molecules, colloidal quantum dots, Nanotubes

Electrically Active Devices

Tunnel diodes **Transistors**

Novel Optical Materials

Layered 2D materials *e. g.* MoS₂, h-BN, graphene

- 1. Optical antennas; fluorescence enhancement & localization
- 2. 2D semiconductor optoelectronics
- 3. Electrically excited optical antennas

Part I

Plasmonic Optical Antennas for **Single Molecule Fluorescence Enhancement, Localization and Imaging**

Why Optical Antennas?

What is an Optical Antenna?

Optical Antenna: "Device that efficiently converts between farfield (propagating) optical radiation and nearfield (localized) energy"

Bharadwaj *et al, Adv. Opt. Photon*., **103**, 186101 (2009).

Antenna **increases** both the **absorption cross-section** and the **radiation resistance**

Realizations of Optical Antennas

Dipole antenna Hertzian dimer Bow-tie Log periodic array

L. Novotny, *Physics Today*, p. 47, July 2011.

Optical Antennas on Scanning Probes

Grounded monopole antenna viewed from an angle of 528 km angle of 528 km angle of 528 km at the end with a focused ion beam at the end of Taminiau, Nat. Phot., **329**, 93 (2010)


```
Dinalo</math>AntannaDipole Antenna
Au nanorod (20nm x 60nm)
```
80nm Au nanoparticle

Top-down fabrication

polarization is green; yellow corresponds to a balance of equal horizontal and vertical polarization. Examples of patterns originating from \mathbf{r}_i **Top-down fabrication indicates that the emission Bottom-up fabrication**

le 25 Aout 1898^a

Andre Blondel

Andre Blondel

"Blondel Antenna"

Monsieur et cher Camarade,

Je ne saurais trop vous remercier de votre bienveillante lettre et de vos précieux conseils, qui m'ont beaucoup donné à réfléchir ; permettez-moi de vous soumettre quelques objections. 2

2. Ce qui tend à confirmer cette impression, c'est que si je prends un oscillateur seul (sans mise à la terre), pris avec une antenne, l'effet constaté sur un cohéreur placé en M ne change pas sensiblement; la propagation le long du fil ne supprime donc pas la propagation dans le diélectrique comme il faudrait l'admettre dans l'hypothèse d'une propagation spécialisée le long de l'antenne et de la terre (fig. 2).

(Blondel to Poincare)

Brioude (H^{te} Loire) Etablissement hydrotherapique¹

3. Comment expliquer l'avantage des hautes antennes d'émission si elles n'agissent peu-ou si elles n'agissent que sur la durée de la période par leur capacité? Il suffirait de remplacer l'antenne par une sphère ayant même capacité par rapport à la terre pour obtenir même période et même propagation à la surface du sol. (fig. 3)

La Correspondance d'Henri Poincaré, Volume 2, p. 32, Basel: Birkhäuser, (2007)

Summer School - Blaubeuren Palash Bharadwai | 29/07/15 | 9

Antenna-emitter Interaction

Antenna-emitter Interaction

$$
\frac{\Gamma_{fl}}{\Gamma_{fl}^o} = \left(\frac{\Gamma_{exc}}{\Gamma_{exc}^o}\right) \left(\frac{\Gamma_r}{\Gamma_r^o}\right) \left(\frac{\Gamma_r^o + \Gamma_{nr}^o}{\Gamma_r + \Gamma_{nr}^o + \Gamma_{abs}}\right)
$$

"good" emitter "poor" emitter

$$
Q^o \approx 1 \equiv \Gamma^o_{nr} \ll \Gamma^o_r
$$
, and $\Gamma_{abs} \approx 0$

 $\frac{\Gamma_{fl}}{\Gamma_{fl}^o} = \frac{\Gamma_{exc}}{\Gamma_{exc}^o}$

excitation enhancement (abs cross-section \spadesuit)

$$
Q^o \approx 0 \equiv \Gamma^o_{nr} \gg \Gamma^o_r, \text{ and } \Gamma_{abs} \approx 0
$$

$$
\frac{\Gamma_{fl}}{\Gamma_{fl}^o} = \left(\frac{\Gamma_{exc}}{\Gamma_{exc}^o}\right) \left(\frac{\Gamma_r}{\Gamma_r^o}\right)
$$

excitation + emission enhancement (abs cross-section \bigwedge *AND* R_{rad} \bigwedge)

High Q^o molecule: Excitation Enhancement

Phys. Rev. Lett. **96**, 113002 (2006)

Enhancement à **Improved Imaging Resolution**

without antenna with Au antenna

Fluorescence image of Nile
Resolution ~65nm FWHM blue molecules

Enhancement **~8x**

Phys. Rev. Lett. **96**, 113002 (2006)

Different Antennas for Different Colors

Alexa488 molecules excited at 488nm

Enhancement ~**1x** Enhancement **~15x**

Opt. Express **15**, 14266 (2007)

"Poor" Emitter (Low Qo): Excitation *and* **Emission Enhancement**

 $Y_3N@C_{80}$ $(Y-Trimetaspheres^{TM})$ Quantum yield ~1%

Antenna Enhances Absorption AND Emission

Fluorescence map of $Y_3N@C_{80}$ with 80nm Au antenna

Huge enhancements of **>100x**

Both absorption (Γ_{exc}) **and** emission (Q) are enhanced!

J. Phys. Chem. C, **114***,* 7444 (2010)

Antenna Shortens Lifetime à **Faster Devices**

ا <mark>Nano Lett., 11, 2137 (2011)</mark> المسابق ا

Non-spherical Antennas

- Higher enhancements
- Better localization

Nanorod Dipole Antennas

L. Novotny, *PRL*, **98**, 266802 (2007) *Chem. Sci.* **2**, 136 (2011)

the trimer antenna for an on-axis excitation with a focused \blacksquare

Kata arises due in arise method in the figure shows contours are found to the form of the High Resolution + High Enhancement z using a logarithmic scale in the December of 2012 between controlled in the multipole contour control calculations in the multipole calculation of the multipole
Setting the multipole calculation of the multipole calculation of the multipole calculation of the multipole c

Self-similar trimer antenna

curve as shown in Fig. 4(b). The sharp increase in signal

 \sim 15nm resolution (\sim λ /40) Fluorescence enhancement 40x $F_{\text{L}}(c) = \frac{F_{\text{L}}(c)}{F_{\text{L}}(c)}$ culture consisting and the constant and consisting the $\frac{40}{80}$

Phys. Rev. Lett. 109, 017402 (2012) nanoparticles. (a) Fluorescence image of the single-molecules. (a) Fluorescence in the single-molecules in the single-molecules in the single-molecules in the single-molecules. (a) $\frac{1}{2}$

Part II

2D Semiconductor Optoelectronics

Transition Metal Dichalcogenides (TMDCs)

Formula: $MX₂$ M = Transition Metal $X =$ Chalcogen

M. Chhowalla et al. *Nature Chemistry* **5**, 263 (2013).

The 2-D Landscape

Optics and Photonics News, July/August 2015

Nanoscopy of 2D Materials

Template-stripped Au pyramid antennas, Courtesy **S.-H. Oh, University of Minnesota**

Topography of $MoS₂$ flake

2.5x2.5 µm photoluminescence 633nm excitation

(Bharadwaj, unpublished)

Gate modulates Light Emission in an MoS₂ FET

15x15 µm confocal PL $MoS₂ FET with graphene-hBN$ backgate

Gate modulation of PL

(Bharadwaj, unpublished)

Where are the Photons Going? Orientational Imaging of MoS₂ Excitons

Angular distribution of PL (Fourier Plane Imaging)

Polarizer along x Polarizer along y

 $MoS₂$ excitons are randomly oriented in-plane

Similar behavior for Vg +5V (trions)

(Bharadwaj, unpublished)

Coupling Antennas to MoS₂

MoS₂ Electrons and Holes Live In-plane

In-plane excitons radiate out-of-plane Coupling excitons to a dimer antenna induces an out-of-plane dipole, which radiates in-plane

Au

Au

 $MoS₂$

MoS₂ sandwiched between a gold dimer

Schematic of experiment **Photoluminescence is enhanced 5x** by the dimer antenna

Where is the light going?

Not coupled to antenna -- Ensemble of in-plane dipoles

Coupled to dimer antenna -- Out-of-plane dipolar emission

Can Excitons be Reoriented?

Absorption still in-plane But *z***-dipole like emission pattern?**

Excitons in strong dc fields Stark modulation of PL?

ITO

SiO₂

Au

MoS₂ over Au Nanoparticles

AFM topography **Record PL counts and angular** distribution of photons as a function of the position of scanning top particle

Dimer-coupled MoS₂ Photoluminescence

1x1 μ m PL with 80nm Au NP Topography

Summer School - Blaubeuren Palash Bharadwai | 29/07/15 | 32

Bharadwaj *et al*, manuscript in preparation

Dimer Antenna Strongly Redirects the PL!

No antenna Antenna-coupled C A $k_{\rm max}$ No polarizer D B k_{x} With polarizer

y dipole. z dipole

Summer School - Blaubeuren Palash Bharadwai | 29/07/15 | 33

Bharadwaj *et al*, manuscript in preparation

First all-MoS₂ LED

Part III

Electrical Excitation of Optical Antennas

Part III

Electrical Excitation of Optical Antennas

Can **optical** antennas be excited **electrically**?

Can electrons excite localized / propagating plasmons?

Electrically Excited Plasmons on a Metal Film

Can propagating surface plasmon polaritons (SPPs) be excited via local electron tunneling?

Plasmon Decay at Kretchmann Angle

Fourier Plane Imaging of 5nm Au on glass

Au tip; 2V bias; 2nA tunnel current

Real Space Imaging of 20nm Au on Glass

Summer School - Blaubeuren **Palash Bharadwaj | 29/07/15 | 40**

PHOTONICS LABORATORY

Single crystal Au flake on ITO (Au tip)

Au tip; 2V bias, 1.5nA tunnel current

Single Crystal Au Nanowire on ITO

Electrically Excited Plasmons on a Nanowire

Electrically Excited Plasmons on a Nanowire

Phys. Rev. Lett., **106**, 226802 (2011)

Ambient STM is not stable!

Topography 3x3 µm

APD Counts 3-30 kHz 3x3 µm

Integrated Light Emitting Antennas with hBN

Light emission on CCD

M. Parzefall, P. Bharadwaj *et al Nature Nano.* **(accepted)**

How fast can one modulate the light emission?

Summer School - Blaubeuren **Palash Bharadwai** | 29/07/15 | 47

Time-modulation of Light Emission

Concluding Remarks

Plasmonics with Single Emitters and Electrons

- Optical antennas enhance absorption and emission of light by single emitters
- Scanning antennas enable high resolution imaging
- Antennas can be electrically excited using tunneling electrons

Active Devices using Novel Optical Materials

- Electrical modulation of photoluminescence from an $MoS₂ FET$
- All-MoS₂ *pn* light-emitting diode
- Antennas strongly redirect light emission from excitons in MoS2

Acknowledgments

■ U.S. DoE and NSF, and Swiss SNF for funding

FONDS NATIONAL SUISSE SCHWEIZERISCHER NATIONALFONDS FONDO NAZIONALE SVIZZERO SWISS NATIONAL SCIENCE FOUNDATION

National Science Foundation

■ Nano-Optics group at U. Rochester and Photonics Lab in ETH **Zurich**