Dipolar Fermi gases

Gora Shlyapnikov LPTMS, Orsay, France University of Amsterdam

Outline

- Introduction,
- Experiments with magnetic atoms and polar molecules
- Topologcal $p_x + ip_y$ phase in 2D
- Bilayer systems of dipolar fermions. BCS-BEC crossover
- Concluding slide

Dipolar gas

Polar molecules or atoms with a large magnetic moment

Different physics compared to ordinary atomic ultracold gases

Alkali-atom molecules d from 0.6 D for KRb to 5.5 D for LiCs

Atoms with large μ

Remarkable experiments with Cr atoms ($\mu = 6\mu_B \Rightarrow d \approx 0.05$ D) T. Pfau group (Stuttgart)

Effects of the dipole-dipole interaction in the dynamics Stability diagram of trapped dipolar BEC

Spinor physics in chromium experiments at Villetaneuse, B. Laburthe-Tolra

Bubble structure of bosonic Dy in Stuttgart

Now dysprosium ($\mu = 10\mu_B$, (B. Lev)) and erbium ($\mu = 7\mu_B$, (F. Ferlaino)) are in the game

Fermionic atoms with large μ

Fermionic Er (Innsbruck) \Rightarrow quantum degeneracy, deformation of the Fermi surface

Fermionic Dy (Stanford) and Cr (Villetaneuse) \Rightarrow quantum degeneracy

Polar molecules. Creation of ultracold clouds

Photoassociation

Transfer of weakly bound KRb fermionic molecules to the ground rovibrational state JILA, D. Jin, J. Ye groups

Experiments with NaK (MIT, Munich), KCs (Innsbruck), NaRb (HongKong), LiRb (Vancouver)

Ultracold chemistry

Ultracold chemical reactions $KRb + KRb \Rightarrow K_2 + Rb_2$ New trends in ultracold chemistry

Suppress instability \rightarrow induce intermolecular repulsion For example, 2D geometry with dipoles perpendicular to the plane

Reduction of the decay rate by 2 orders of magnitude at JILA

Select non-reactive molecules, like NaK, KCs, RbCs

Creation of ground-state NaK fermionic molecules (MIT, now also Munich)

What are prospects for novel physics ?

Theoretical studies

Collisional physics

Julienne (Gaithersburg), Krems (Vancouver), Greene (Purdue)

Bohn (Boulder), Dulieu (Orsay), Hutson (Durham)

Many-body physics

Santos (Hannover), Pupillo (Strassbourg), Demler (Harvard) Zoller/Baranov (Innsbruck), Gorshkov (Maryland) Lewenstein (Barcelona), Carr (Colorado), G.S.

Many other works

Are there novel many-body states?

Does the dipole-dipole interaction lead to the emergence of novel phases for identical fermions?

Why single-component fermions are interesting?

Topological aspects of $p_x + ip_y$ state in 2D

Vortices. Zero-energy mode related to two vortices. (Read/Green, 2000)

The number of zero-energy states exponentially grows with the number of vortices $2^{(N_v/2-1)}$ Non-abelian statistics \Rightarrow Exchanging vortices creates a different state! Non-local character of the state. Local perturbation does not cause decoherence Topologically protected state for quantum information processing

p-wave resonance for fermionic atoms

p-wave resonance Experiments at JILA, ENS, Melbourne, Tokyo, elsewhere

$$\mathsf{BCS} \Rightarrow \quad T_c \sim \exp\left(-\frac{1}{(k_F b)^2}\right) \quad \text{practically zero}$$

Molecular and strongly interacting regimes \Rightarrow rather high T_c , but collisional instability

Gurarie/Radzihovsky; Gurarie/Cooper; Castin/Jona-Lazinio

RF-dressed polar molecules in 2D (Gorshkov et al, 2007)

Two RFD molecules in 2D. The dipole moment is rotating with RF frequency

Fermionic RFD molecules. Superfluid transition

Fermionic RFD molecules in a single quantum state in 2D J. Levinsen, N.R. Cooper, G.S. (2009-2011)

Attractive interaction for the *p*-wave scattering ($l = \pm 1$)

 $\hat{H} = \int d^2 r \,\hat{\Psi}^{\dagger}(\mathbf{r}) \{ -(\hbar^2/2m)\Delta + \int d^2 r' \hat{\Psi}^{\dagger}(\mathbf{r}') V_{eff}(\mathbf{r} - \mathbf{r}') \hat{\Psi}(\mathbf{r}') - \mu \} \hat{\Psi}(\mathbf{r})$

$$\Delta(\mathbf{r} - \mathbf{r}') = \langle V_{eff}(\mathbf{r} - \mathbf{r}')\hat{\Psi}(\mathbf{r})\hat{\Psi}(\mathbf{r}')\rangle$$

Gap equation $\Delta(\mathbf{k}) = -\int \frac{d^2k}{(2\pi)^2} V_{eff}(\mathbf{k} - \mathbf{k}') \Delta(\mathbf{k}') \frac{\tanh(\epsilon(k')/T)}{2\epsilon(k')}$

$$\epsilon(k) = \sqrt{(\hbar^2 k^2 / 2m - \mu)^2 + |\Delta(k)|^2}; \quad \mu \approx E_F$$
$$T_c \approx E_F \exp(-3\pi/4k_F r_*)$$
$$\Delta(\mathbf{k}) = \Delta \exp(i\phi_k) \quad p_x + ip_y \text{ state } (l = \pm 1)$$

Superfluid transition. Role of anomalous scattering

For short-range potentials should be $V_{eff} \propto k^2$ and $T_c \propto \exp(-1/(k_F b)^2)$ This is the case for the atoms

Anomalous scattering in $1/r^3$ potential \rightarrow Contribution from $r \sim 1/k$

$$V_{eff}(k) = -\frac{8\hbar^2}{3m}(kr_*); \qquad |k| = |k'|$$
$$T_c \propto \exp\left(-\frac{1}{\nu(k_F)|V_{eff}(k_F)|}\right); \qquad \nu = \frac{m}{2\pi\hbar^2}$$
$$T_C \propto \exp\left(-\frac{3\pi}{4k_Fr_*}\right)$$

Transition temperature

Do better than simple BCS. Reveal the role of short-range physics

Renormalized gap equation

 $\Delta(\mathbf{k}') = -\int f(\mathbf{k}', \mathbf{k}) \Delta(\mathbf{k}) \left\{ \frac{\tanh[\epsilon(k)/2T]}{2\epsilon(k)} - \frac{1}{(E_k - E_{k'} - i0)} \right\} \frac{d^2k}{(2\pi)^2}$

 $\Delta(\mathbf{k}) = \Delta(k) \exp(i\phi_k); f(\mathbf{k}', \mathbf{k}) = f(k', k) \exp[i(\phi_k - \phi_{k'})] \text{ scattering amplitude}$

2D scattering in the potential with a $1/r^3$ tail

Scattering amplitude. No transparent exact solution for a finite k

Asymptotic method for slow scattering ($kr_* \ll 1$)

Divide the range of distances into two parts, $r < r_0$ and $r > r_0$ The distance r_0 is such that $r_0 \gg r_*$, but $kr_0 \ll 1$

 $r < r_0$ Match exact zero-energy with free finite-k solution at $r = r_0$: $f \Rightarrow (\pi/2)d^2r_*k^2 \ln k$ $r > r_0$ interaction as perturbation: $f = -(8\pi/3)d^2k + (\pi/2)d^2r_*k^2 \ln k$ Related results for the off-shell scattering amplitude

Manipulate T_c ?

$$f(k',k) = -\pi d^2 k F\left(\frac{1}{2}, -\frac{1}{2}, 2, \frac{k^2}{k'^2}\right); \ k \le k'; \ kr_* \ll 1$$

Include k^2 -term $f = \frac{1}{2}\pi d^2 r_* k^2 \ln[kr_*u]$
 $T_c = \frac{2e^C}{\pi} E_F \exp\left\{-\frac{3\pi}{4k_F r_*} - \frac{9\pi^2}{64}\ln[k_F r_*u]\right\}$

Take into account second-order Gor'kov-Melik-Barkhudarov processes

 κ depends on short-range physics and can be varied within 2 orders of magnitude

Collisional stability and T_c

p-wave atomic superfluids: $BCS \Rightarrow T_c \rightarrow 0$ Resonance \Rightarrow collisional instability

Polar molecules \Rightarrow sufficiently large T_c and collisional stability

 $\alpha_{in} = A \frac{\hbar}{m} (kr_*)^2; \quad A \Rightarrow 10^{-3} - 10^{-4} \quad \alpha_{in} \to (10^{-8} - 10^{-9}) \text{ cm}^2/\text{s}$

NaK molecules $\rightarrow d \simeq 2.7 \text{ D}$ $r_* \approx 3200 a_0$ $n = 2 \times 10^8 \text{ cm}^{-2} \Rightarrow E_F = 2\pi \hbar^2 n/m \approx 100 \text{ nK}$ $T_c \approx 10 \text{ nK}; \tau \sim 2\text{s}$

Bilayered dipolar fermionic systems

$$V(\rho) = d^2 \left\{ \frac{1}{(\rho^2 + \lambda^2)^{3/2}} - \frac{3\lambda^2}{(\rho^2 + \lambda^2)^{5/2}} \right\}$$

Dipole-dipole length $r_* = md^2/\hbar^2$ Dipole-dipole strength $\beta = r_*/\lambda$.

$$V_{min} = -\frac{2d^2}{\lambda^3}; \quad \int_0^\infty V(r)rdr = 0$$

Always a bound state of \uparrow and \uparrow dipoles \rightarrow B. Simon, 1974 $\beta \lesssim 1 \Rightarrow \epsilon_b \simeq \frac{\hbar^2}{m\lambda^2} \exp[-8/\beta^2 + 8/\beta - (5 + 2C - 2\ln 2)]$

BCS-BEC crossover

 $\epsilon_b \ll E_F(r_b \gg n^{-1/2}) \Rightarrow f < 0 \rightarrow s$ -wave BCS pairing

 $\epsilon_b \gg E_F \Rightarrow$ Molecules of \uparrow and \uparrow dipoles (interlayer dimers). Molecular BEC

New BCS-BEC crossover (Pikovski, Klawunn, Santos, GS), 2010 Baranov et al, 2011, Zinner et al, 2011

Transition temperature

Kosterlitz-Thouless transition $\epsilon_b \ll E_F \rightarrow T_{KT}$ is close to T_{BCS} $k_F r_* \ll r_*^2/\lambda^2 \rightarrow$ Short-range contribution $f = -4\pi\hbar^2/m\ln(E_F/\epsilon_b)$ $T_{KT} \simeq \frac{e^{\gamma}}{\pi} \sqrt{2E_F \epsilon_b}$ $k_F r_* \gg r_*^2 / \lambda^2 (\lambda \gg r_*) \rightarrow \text{Anomalous scattering wins}$ $f(k) = \frac{\hbar^2}{m} \left\{ -8kr_* - \frac{\pi r_*^2}{2\lambda^2} + 4\pi k^2 r_* \lambda + 3\pi (kr_*)^2 \ln \xi k\lambda \right\}; \quad k\lambda \ll 1 \ \xi \approx 6$ $T_{KT} \simeq 0.1 \left(\frac{E_0}{E_E}\right)^{0.46} \exp\left\{-\frac{\pi}{4k_E r_*}G(k_F\lambda, r_*/\lambda)\right\}$ $E_0 = \hbar^2 / m\lambda^2; \ G(x,y) = (1 - \pi x/2 + \pi y/16x)^{-1}$

 $E_F \ll \epsilon_b \rightarrow$ Formation of bound pairs by fermions of different layers T_{KT} of a weakly interacting Bose gas

Transition temperature

NaK molecules $\lambda \simeq 250$ nm, $n \simeq 5 \times 10^8$ cm⁻², $k_F \lambda \simeq 2$, $E_F \simeq 230$ nk $\Rightarrow T_{KT}$ up to ~ 10 nK

Many possibilities to generate novel many-body states in dipolar Fermi gases

Thank you for attention