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Dipolar gas

Polar molecules or atoms with a large magnetic moment

Dipole-dipole interaction Vd =
~d1~d2R

2 − 3(~d1 ~R)(~d2 ~R)

R5
∼ 1

R3

d1

d 2

R
long-range, anisotropic

repulsion

attraction

Different physics compared to ordinary atomic ultracold gases

Alkali-atom molecules d from 0.6D for KRb to 5.5D for LiCs
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Atoms with large µ

Remarkable experiments with Cr atoms (µ = 6µB ⇒ d ≈ 0.05 D)

T. Pfau group (Stuttgart)

Effects of the dipole-dipole interaction in the dynamics
Stability diagram of trapped dipolar BEC

Spinor physics in chromium experiments at Villetaneuse, B. Laburthe-Tolra

Bubble structure of bosonic Dy in Stuttgart

Now dysprosium (µ = 10µB , (B. Lev))

and erbium (µ = 7µB, (F. Ferlaino)) are in the game
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Fermionic atoms with largeµ

Fermionic Er (Innsbruck) ⇒ quantum degeneracy, deformation of the Fermi surface

Fermionic Dy (Stanford) and Cr (Villetaneuse) ⇒ quantum degeneracy
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Polar molecules. Creation of ultracold clouds

Photoassociation

Transfer of weakly bound KRb fermionic molecules to the ground rovibrational state
JILA, D. Jin, J. Ye groups

R

U(R)

KRb

Feshbach state

n ∼ 1012 − 1013 cm−3

T ≈ 200nK ∼ EF

Ground-state LiCs molecules at Heidelberg
Ground-state RbCs molecules in Innsbruck

Ground-state KRb bosonic molecules in Tokyo

Experiments with NaK (MIT, Munich),KCs (Innsbruck), NaRb (HongKong), LiRb (Vancouver)
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Ultracold chemistry

Ultracold chemical reactions KRb +KRb ⇒ K2 + Rb2

New trends in ultracold chemistry

Suppress instability → induce intermolecular repulsion
For example, 2D geometry with dipoles perpendicular to the plane

d

r

V(r)
1/r3

Reduction of the decay rate by 2 orders of magnitude at JILA

Select non-reactive molecules, like NaK, KCs, RbCs

Creation of ground-state NaK fermionic molecules (MIT, now also Munich)

What are prospects for novel physics ?
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Theoretical studies

Collisional physics

Julienne (Gaithersburg), Krems (Vancouver), Greene (Purdue)

Bohn (Boulder), Dulieu (Orsay), Hutson (Durham)

Many-body physics

Santos (Hannover), Pupillo (Strassbourg), Demler (Harvard)

Zoller/Baranov (Innsbruck), Gorshkov (Maryland)

Lewenstein (Barcelona), Carr (Colorado), G.S.

Many other works
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Are there novel many-body states?

Does the dipole-dipole interaction lead to the emergence

of novel phases for identical fermions?
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Why single-component fermions are interesting?

Topological aspects of px + ipy state in 2D

Vortices. Zero-energy mode related to two vortices. (Read/Green, 2000)

ε

The number of zero-energy states exponentially grows with the number of vortices 2(Nv/2−1)

Non-abelian statistics ⇒ Exchanging vortices creates a different state!

Non-local character of the state. Local perturbation does not cause decoherence

Topologically protected state for quantum information processing
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p-wave resonance for fermionic atoms

p-wave resonance Experiments at JILA, ENS, Melbourne, Tokyo, elsewhere

BCS ⇒ Tc ∼ exp

(

− 1

(kF b)2

)

practically zero

Molecular and strongly interacting regimes ⇒ rather high Tc, but
collisional instability

Gurarie/Radzihovsky; Gurarie/Cooper; Castin/Jona-Lazinio

BCS

stable

p−wave molecules

unstable
SIR

unstable

B

g
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RF-dressed polar molecules in 2D (Gorshkov et al, 2007)

Edc

Eac

E
acRFpolarizedσ+

0Edcconstant+
2B

J=1

J=0

Dressed states |+〉 = α|0, 0〉+ β|1, 1〉; , |−〉 = β|0, 0〉 − α|1, 1〉
α = − A√

A2+Ω2
; β = Ω√

A2+Ω2
; A = 1

2 (δ +
√
δ2 + 4Ω2)

Two RFD molecules in 2D. The dipole moment is rotating with RF frequency

d c

dc

r

V
eff

r

d  =2  
c

1/2α β d

Large r → Veff = 〈(1− 3 cos2 φ)〉d
2
c

r3
= − d2c

2r3
; r∗ = md2c/2~

2
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Fermionic RFD molecules. Superfluid transition

Fermionic RFD molecules in a single quantum state in 2D
J. Levinsen, N.R. Cooper, G.S. (2009-2011)

Attractive interaction for the p-wave scattering (l = ±1)

Ĥ =
∫

d2r Ψ̂†(r){−(~2/2m)∆ +
∫

d2r′Ψ̂†(r′)Veff (r− r
′)Ψ̂(r′)− µ}Ψ̂(r)

∆(r− r
′) = 〈Veff (r− r

′)Ψ̂(r)Ψ̂(r′)〉

Gap equation ∆(k) = −
∫

d2k
(2π)2Veff (k− k

′)∆(k′) tanh(ǫ(k
′)/T )

2ǫ(k′)

ǫ(k) =
√

(~2k2/2m− µ)2 + |∆(k)|2; µ ≈ EF

Tc ≈ EF exp(−3π/4kF r∗)

∆(k) = ∆exp(iφk) px + ipy state (l = ±1)
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Superfluid transition. Role of anomalous scattering

For short-range potentials should be Veff ∝ k2 and Tc ∝ exp(−1/(kF b)
2)

This is the case for the atoms

Anomalous scattering in 1/r3 potential → Contribution from r ∼ 1/k

Veff (k) = − 8~2

3m (kr∗); |k| = |k′|

Tc ∝ exp
(

− 1
ν(kF )|Veff (kF )|

)

; ν = m
2π~2

TC ∝ exp
(

− 3π
4kF r∗

)
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Transition temperature

Do better than simple BCS. Reveal the role of short-range physics

Renormalized gap equation

∆(k′) = −
∫

f(k′,k)∆(k)

{

tanh[ǫ(k)/2T ]

2ǫ(k)
− 1

(Ek − Ek′ − i0)

}

d2k

(2π)2

∆(k) = ∆(k) exp(iφk); f(k
′,k)=f(k′, k) exp[i(φk − φk′)] scattering amplitude

∆(k) = ∆(kF )f(k, kF )/f(kF , kF )

k
F

∆ (k)

k
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2D scattering in the potential with a1/r3 tail

Scattering amplitude. No transparent exact solution for a finite k

Asymptotic method for slow scattering (kr∗ ≪ 1)

Divide the range of distances into two parts, r < r0 and r > r0

The distance r0 is such that r0 ≫ r∗, but kr0 ≪ 1

r
rr 0

*

V(r)

r < r0 Match exact zero-energy with free finite-k solution at r = r0: f ⇒ (π/2)d2r∗k2 ln k

r > r0 interaction as perturbation: f = −(8π/3)d2k + (π/2)d2r∗k2 ln k

Related results for the off-shell scattering amplitude – p. 15



Manipulate Tc?

f(k′, k) = −πd2kF

(

1

2
,−1

2
, 2,

k2

k′2

)

; k ≤ k′; kr∗ ≪ 1

Include k2-term f =
1

2
πd2r∗k

2 ln[kr∗u]

Tc =
2eC

π
EF exp

{

− 3π

4kF r∗
− 9π2

64
ln[kF r∗u]

}

Take into account second-order Gor’kov-Melik-Barkhudarov processes

p

−p

p’

−p’

δV 2nd order

∆(k) = −
∫

d2k′

(2π)2 f(k,k
′)
{

tanh(ǫ(k′)/T )
2ǫ(k′) − 1

2(Ek′−Ek)

}

∆(k′)

−
∫

d2k′

(2π)2 δV (k,k′) tanh(ǫ(k
′)/T )

2ǫ(k′) ∆(k′)

Tc = κE0.3
F E0.7

∗ exp

{

− 3π

4kF r∗

}

; E∗ =
~
2

2mr2∗
≫ EF

κ depends on short-range physics and can be varied within 2 orders of magnitude
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Collisional stability and Tc

p-wave atomic superfluids: BCS ⇒ Tc → 0 Resonance ⇒ collisional instability

Polar molecules ⇒ sufficiently large Tc and collisional stability

r

V(r)

αin = A ~

m (kr∗)2; A ⇒ 10−3 − 10−4 αin → (10−8 − 10−9) cm2/s

NaK molecules → d ≃ 2.7 D r∗ ≈ 3200a0

n = 2× 108 cm−2 ⇒ EF = 2π~2n/m ≈ 100 nK Tc ≈ 10 nK; τ ∼ 2s
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Bilayered dipolar fermionic systems

d

d

V(ρ)

ρ
2

λ
λ

V (ρ) = d2
{

1

(ρ2 + λ2)3/2
− 3λ2

(ρ2 + λ2)5/2

}

Dipole-dipole length r∗ = md2/~2 Dipole-dipole strength β = r∗/λ.

Vmin = −2d2

λ3
;

∫ ∞

0

V (r)rdr = 0

Always a bound state of ↑ and ↑ dipoles → B. Simon, 1974

β . 1 ⇒ ǫb ≃
~
2

mλ2
exp[−8/β2 + 8/β − (5 + 2C − 2 ln 2)]
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BCS-BEC crossover

ǫb ≪ EF (rb ≫ n−1/2) ⇒ f < 0 → s-wave BCS pairing

ǫb ≫ EF ⇒ Molecules of ↑ and ↑ dipoles (interlayer dimers). Molecular BEC

New BCS-BEC crossover (Pikovski, Klawunn, Santos, GS), 2010
Baranov et al, 2011, Zinner et al, 2011
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Transition temperature

Kosterlitz-Thouless transition ǫb ≪ EF → TKT is close to TBCS

kF r∗ ≪ r2∗/λ
2 → Short-range contribution f = −4π~2/m ln(EF /ǫb)

TKT ≃ eγ

π

√

2EF ǫb

kF r∗ ≫ r2∗/λ
2(λ ≫ r∗) → Anomalous scattering wins

f(k) =
~
2

m

{

−8kr∗ −
πr2∗
2λ2

+ 4πk2r∗λ+ 3π(kr∗)
2 ln ξkλ

}

; kλ ≪ 1 ξ ≈ 6

TKT ≃ 0.1

(

E0

EF

)0.46

exp

{

− π

4kF r∗
G(kFλ, r∗/λ)

}

E0 = ~
2/mλ2; G(x, y) = (1− πx/2 + πy/16x)−1

EF ≪ ǫb → Formation of bound pairs by fermions of different layers
TKT of a weakly interacting Bose gas
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Transition temperature
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NaK molecules λ ≃ 250 nm, n ≃ 5× 108 cm−2, kFλ ≃ 2, EF ≃ 230 nk
⇒ TKT up to ∼ 10 nK
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Concluding slide

Many possibilities to generate novel many-body states

in dipolar Fermi gases

Thank you for attention
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